--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan3 results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.85 --- # distilhubert-finetuned-gtzan3 This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0442 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9942 | 1.0 | 225 | 1.8990 | 0.51 | | 1.2485 | 2.0 | 450 | 1.2682 | 0.62 | | 0.9196 | 3.0 | 675 | 1.0459 | 0.69 | | 0.9034 | 4.0 | 900 | 0.8488 | 0.75 | | 0.3035 | 5.0 | 1125 | 0.7319 | 0.76 | | 0.0715 | 6.0 | 1350 | 0.8713 | 0.77 | | 0.1338 | 7.0 | 1575 | 0.8239 | 0.82 | | 0.0254 | 8.0 | 1800 | 0.9324 | 0.83 | | 0.0044 | 9.0 | 2025 | 0.7641 | 0.85 | | 0.0024 | 10.0 | 2250 | 0.9133 | 0.83 | | 0.19 | 11.0 | 2475 | 0.9976 | 0.84 | | 0.0013 | 12.0 | 2700 | 0.9684 | 0.83 | | 0.0011 | 13.0 | 2925 | 0.9241 | 0.85 | | 0.001 | 14.0 | 3150 | 0.9540 | 0.86 | | 0.0008 | 15.0 | 3375 | 1.0849 | 0.85 | | 0.0007 | 16.0 | 3600 | 0.9005 | 0.85 | | 0.0007 | 17.0 | 3825 | 0.9798 | 0.84 | | 0.0007 | 18.0 | 4050 | 1.0058 | 0.84 | | 0.0005 | 19.0 | 4275 | 1.0524 | 0.85 | | 0.0006 | 20.0 | 4500 | 1.0442 | 0.85 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3