mdround commited on
Commit
90f501b
·
1 Parent(s): db44a78

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 242.35 +/- 19.99
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff1b56688c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff1b5668950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff1b56689e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff1b5668a70>", "_build": "<function ActorCriticPolicy._build at 0x7ff1b5668b00>", "forward": "<function ActorCriticPolicy.forward at 0x7ff1b5668b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff1b5668c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff1b5668cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff1b5668d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff1b5668dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff1b5668e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff1b56c1090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660328848.973456, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABxOz0bYPk+mpCqvWsik75vZRI6FNAYvgAAAAAAAAAAzZZJPfacErqWAFI8FfGvNt2ExbpPPrA1AACAPwAAgD8AA728FOyQuov0QDwpeIq19mIdukdDg7QAAIA/AACAP03lcD2Png66hT3ZOrSW2LO6Fkk64uMWswAAgD8AAIA/ABruPHuCirpd7sS6QGfOtekTtLouHOU5AACAPwAAgD9N3oq9KVBUuuPdQDwx4pA1MC5gO3OihjQAAIA/AACAPzNhWLyuBY26C8usOQGX+TVwgEQ6VJvIuAAAgD8AAIA/TbGyvY9eHrrrOAu7MVfatlGjj7saajI6AACAPwAAgD/NHBQ81p1pP/CFfL30+re+15G6vEB1rb0AAAAAAAAAABrVSr32jAq6nax1u9I6mTcHr406vpo4OgAAgD8AAIA/WlA/vn1nDz9plDo+XlCaviH+mD2wwVS9AAAAAAAAAACNqb89XNdkurp5ODtAw8MzI/luO9pSJzEAAIA/AACAP5qqGr1SuKa3FRO/upf4arh0sne7WF5rOQAAgD8AAIA/zWiLO49aHLoWTiG8p2qzNFtEb7uWrCK0AACAPwAAgD/NqbO8c9ysPujHr71H9V++FDgzvQUR27wAAAAAAAAAADOXjL1I/Zu6eguUOu97SLaFl/e6wis7tQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaoe/JmvVXkCUhpRSlIwBbJRN6AOMAXSUR0CWU5B55Z8sdX2UKGgGaAloD0MISP5g4LmYZkCUhpRSlGgVTegDaBZHQJZjkCRwIdF1fZQoaAZoCWgPQwgWFAZlmqllQJSGlFKUaBVN6ANoFkdAlmUcy8BdU3V9lChoBmgJaA9DCJLNVfMcBWRAlIaUUpRoFU3oA2gWR0CWbeQm/nGLdX2UKGgGaAloD0MI8Z4DyxGGZECUhpRSlGgVTegDaBZHQJZvi1kUbkx1fZQoaAZoCWgPQwhupddm45phQJSGlFKUaBVN6ANoFkdAlm/fQ0GeMHV9lChoBmgJaA9DCCyBlNg1oGJAlIaUUpRoFU3oA2gWR0CWcoGUwBYFdX2UKGgGaAloD0MIinQ/p6BLYUCUhpRSlGgVTegDaBZHQJZzYZ3s5XF1fZQoaAZoCWgPQwgbKzHPSnZhQJSGlFKUaBVN6ANoFkdAlnnutOmBOHV9lChoBmgJaA9DCLAcIQN59VlAlIaUUpRoFU3oA2gWR0CWelNRWLgodX2UKGgGaAloD0MI1A0UeKdbZkCUhpRSlGgVTegDaBZHQJZ6sebNKRN1fZQoaAZoCWgPQwh8R40JsTlgQJSGlFKUaBVN6ANoFkdAlntjRx95QnV9lChoBmgJaA9DCIC21awzg1pAlIaUUpRoFU3oA2gWR0CWfCKQ7tAtdX2UKGgGaAloD0MIDamieBWvYUCUhpRSlGgVTegDaBZHQJZ8fVNHpbF1fZQoaAZoCWgPQwi3mJ8bmghkQJSGlFKUaBVN6ANoFkdAln6qKgqVhXV9lChoBmgJaA9DCOIGfH4YumJAlIaUUpRoFU3oA2gWR0CWkcyDIzWPdX2UKGgGaAloD0MICRaHM79qQECUhpRSlGgVS/VoFkdAlpqFkhA4XHV9lChoBmgJaA9DCEvJchJKfzfAlIaUUpRoFU0OAWgWR0CWnGg5BC2MdX2UKGgGaAloD0MIOZm4VRA1YUCUhpRSlGgVTegDaBZHQJahhXFLnLd1fZQoaAZoCWgPQwgzh6QWSnxkQJSGlFKUaBVN6ANoFkdAlrBVfJFLFnV9lChoBmgJaA9DCEj8ijXcN2FAlIaUUpRoFU3oA2gWR0CWseIUrTYvdX2UKGgGaAloD0MI8YEd/wU+YECUhpRSlGgVTegDaBZHQJa7QXQ+lj51fZQoaAZoCWgPQwh39pUH6YZhQJSGlFKUaBVN6ANoFkdAlr0YYixFAnV9lChoBmgJaA9DCALTad0GQl5AlIaUUpRoFU3oA2gWR0CWvW8q4H5adX2UKGgGaAloD0MIi/1l9+TnZECUhpRSlGgVTegDaBZHQJbAOb+cYqJ1fZQoaAZoCWgPQwhccXFUbmZhQJSGlFKUaBVN6ANoFkdAlsEygoPTX3V9lChoBmgJaA9DCB43/G66S2JAlIaUUpRoFU3oA2gWR0CWyChXbM5fdX2UKGgGaAloD0MImu/gJw4AZECUhpRSlGgVTegDaBZHQJbIlamoBJZ1fZQoaAZoCWgPQwhgzQGCObdeQJSGlFKUaBVN6ANoFkdAlsj3nuAqeHV9lChoBmgJaA9DCJjCg2bXwFZAlIaUUpRoFU3oA2gWR0CWybRywOe8dX2UKGgGaAloD0MI6lvmdFm0XECUhpRSlGgVTegDaBZHQJbNYCfYjB51fZQoaAZoCWgPQwhQUIpW7oJmQJSGlFKUaBVN6ANoFkdAls4C5d4VynV9lChoBmgJaA9DCETC9/6GA2dAlIaUUpRoFU3oA2gWR0CW6xzRx95RdX2UKGgGaAloD0MIRFGgT+QyZECUhpRSlGgVTegDaBZHQJbtSLCN0eV1fZQoaAZoCWgPQwihaB7AIllDQJSGlFKUaBVNQwFoFkdAlu3UcGTs6nV9lChoBmgJaA9DCKSnyCHiMV5AlIaUUpRoFU3oA2gWR0CW8lRoAXEZdX2UKGgGaAloD0MImN7+XDRQNUCUhpRSlGgVTSABaBZHQJb/asU7CBR1fZQoaAZoCWgPQwiKARJNIIZiQJSGlFKUaBVN6ANoFkdAlwEKiGnGbXV9lChoBmgJaA9DCBrc1haew1lAlIaUUpRoFU3oA2gWR0CXApsSCe3AdX2UKGgGaAloD0MI0Lnb9dKvYkCUhpRSlGgVTegDaBZHQJcLfMcIZ651fZQoaAZoCWgPQwhk6xnCMdBgQJSGlFKUaBVN6ANoFkdAlw0p6yB063V9lChoBmgJaA9DCBuEud1LDWNAlIaUUpRoFU3oA2gWR0CXDXqpcX3ydX2UKGgGaAloD0MIdNL7xteFXkCUhpRSlGgVTegDaBZHQJcQLaAWi111fZQoaAZoCWgPQwiQvd79cQVhQJSGlFKUaBVN6ANoFkdAlxEJsCT2WnV9lChoBmgJaA9DCNbm/1VHUmFAlIaUUpRoFU3oA2gWR0CXFx1CPZIydX2UKGgGaAloD0MIfIDuy5mgXECUhpRSlGgVTegDaBZHQJcX6mrKeTV1fZQoaAZoCWgPQwgxQ+OJIORmQJSGlFKUaBVN6ANoFkdAlxihK15SnHV9lChoBmgJaA9DCCf4pumzrFxAlIaUUpRoFU3oA2gWR0CXHHcO9WZJdX2UKGgGaAloD0MIvobguAz2ZUCUhpRSlGgVTegDaBZHQJcdGHxjJ+51fZQoaAZoCWgPQwhJumbyzc4mQJSGlFKUaBVNIQFoFkdAlx9QydnTRnV9lChoBmgJaA9DCORqZFdalh/AlIaUUpRoFU0SAWgWR0CXOJFsYVIqdX2UKGgGaAloD0MIwHgGDf2AYkCUhpRSlGgVTegDaBZHQJc5X4j8k2R1fZQoaAZoCWgPQwiDpE+raNJiQJSGlFKUaBVN6ANoFkdAlzvGVeKKpHV9lChoBmgJaA9DCGzrp/+ss2BAlIaUUpRoFU3oA2gWR0CXP9+Lm6oVdX2UKGgGaAloD0MIZ2Ml5lmdP0CUhpRSlGgVTSoBaBZHQJdAJm7J4jd1fZQoaAZoCWgPQwiBsFOsmkphQJSGlFKUaBVN6ANoFkdAl0td0mtyP3V9lChoBmgJaA9DCJs90AoMBWdAlIaUUpRoFU3oA2gWR0CXTL2ZAprldX2UKGgGaAloD0MI8bvplh3nZECUhpRSlGgVTegDaBZHQJdODYukDZF1fZQoaAZoCWgPQwiA8nfvqCFiQJSGlFKUaBVN6ANoFkdAl1XxoduHe3V9lChoBmgJaA9DCD2CGynbzWJAlIaUUpRoFU3oA2gWR0CXV3DtPYWddX2UKGgGaAloD0MI+RQA4xkNYUCUhpRSlGgVTegDaBZHQJdXuk43m3h1fZQoaAZoCWgPQwgNxR1v8kViQJSGlFKUaBVN6ANoFkdAl1rnJHRTj3V9lChoBmgJaA9DCMvVj03y+GVAlIaUUpRoFU3oA2gWR0CXYrgxagVXdX2UKGgGaAloD0MIPE7RkdycZ0CUhpRSlGgVTegDaBZHQJdj5Tho/Rp1fZQoaAZoCWgPQwjeVKTC2KNlQJSGlFKUaBVN6ANoFkdAl2nSU5dWyXV9lChoBmgJaA9DCC4cCMkCg2ZAlIaUUpRoFU3oA2gWR0CXbR7QswtbdX2UKGgGaAloD0MI51YIq7ECXkCUhpRSlGgVTegDaBZHQJeHmnUDuBt1fZQoaAZoCWgPQwhk5gKXR49hQJSGlFKUaBVN6ANoFkdAl4iChew9q3V9lChoBmgJaA9DCP2hmSfXt2JAlIaUUpRoFU3oA2gWR0CXiy6f8MuwdX2UKGgGaAloD0MIz/i+uFRHZECUhpRSlGgVTegDaBZHQJeP8Oby6MB1fZQoaAZoCWgPQwiH/gkuVkJiQJSGlFKUaBVN6ANoFkdAl5BE5EMLGHV9lChoBmgJaA9DCD+toj+0FGNAlIaUUpRoFU3oA2gWR0CXnF1qFh5PdX2UKGgGaAloD0MImUuqtptFY0CUhpRSlGgVTegDaBZHQJed4gIQe3h1fZQoaAZoCWgPQwgZkSi0LHdiQJSGlFKUaBVN6ANoFkdAl59IFNcnmnV9lChoBmgJaA9DCF+VC5V/dGFAlIaUUpRoFU3oA2gWR0CXpzB42S+ydX2UKGgGaAloD0MI9+Y3TDRjZECUhpRSlGgVTegDaBZHQJeotqKxcFB1fZQoaAZoCWgPQwjyBpj5jq5kQJSGlFKUaBVN6ANoFkdAl6j/0/W1+nV9lChoBmgJaA9DCJuSrMPRhWBAlIaUUpRoFU3oA2gWR0CXrEoCdSVGdX2UKGgGaAloD0MIGsOcoE3oX0CUhpRSlGgVTegDaBZHQJe0IDr7fpF1fZQoaAZoCWgPQwhHPq946ppiQJSGlFKUaBVN6ANoFkdAl7T7JGOMl3V9lChoBmgJaA9DCP3ZjxSRyS9AlIaUUpRoFU0RAWgWR0CXuRMX7+DOdX2UKGgGaAloD0MIMzLIXYQeXkCUhpRSlGgVTegDaBZHQJe5aZqmCRR1fZQoaAZoCWgPQwicM6K0t81iQJSGlFKUaBVN6ANoFkdAl7yniR4hU3V9lChoBmgJaA9DCN5X5UJl0GBAlIaUUpRoFU3oA2gWR0CX1n4I8hcJdX2UKGgGaAloD0MIamgDsIGiY0CUhpRSlGgVTegDaBZHQJfXVdonKGN1fZQoaAZoCWgPQwjkafmBq9JBQJSGlFKUaBVNGwFoFkdAl9fbnLaEjHV9lChoBmgJaA9DCAjNrnsrqmJAlIaUUpRoFU3oA2gWR0CX2bYm9g4PdX2UKGgGaAloD0MI9gt2w7aKZUCUhpRSlGgVTegDaBZHQJfd9d0JWvN1fZQoaAZoCWgPQwgNGY9SCXdjQJSGlFKUaBVN6ANoFkdAl9484HX2/XV9lChoBmgJaA9DCC+Lic3HKWBAlIaUUpRoFU3oA2gWR0CX6jxgRbr1dX2UKGgGaAloD0MIdlPKayXVWkCUhpRSlGgVTegDaBZHQJfrtS5y2hJ1fZQoaAZoCWgPQwi7nX3lwSZiQJSGlFKUaBVN6ANoFkdAl+0ZPqLS/nV9lChoBmgJaA9DCB1yM9yAyWRAlIaUUpRoFU3oA2gWR0CX9ZjjaPCEdX2UKGgGaAloD0MIQPm7d1RoZkCUhpRSlGgVTegDaBZHQJf3Ipw0fo11fZQoaAZoCWgPQwiSdTi6SrlEQJSGlFKUaBVL/2gWR0CX+gGO+7DmdX2UKGgGaAloD0MIAwZJn1YzZ0CUhpRSlGgVTegDaBZHQJf7DesPrfN1fZQoaAZoCWgPQwiCHJQw0+JjQJSGlFKUaBVN6ANoFkdAmAPQSvkilnV9lChoBmgJaA9DCHEgJAuYdmFAlIaUUpRoFU3oA2gWR0CYB9X7tRekdX2UKGgGaAloD0MIO2743XR8ZUCUhpRSlGgVTegDaBZHQJgIMMVk+X91fZQoaAZoCWgPQwgKStHKPS1iQJSGlFKUaBVN6ANoFkdAmAtKkM1CPnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 176, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1100909750743aa2ad1973491e10dc9385c6d300c3522b8f426944e180cdb0cb
3
+ size 147151
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff1b56688c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff1b5668950>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff1b56689e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff1b5668a70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff1b5668b00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff1b5668b90>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff1b5668c20>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff1b5668cb0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff1b5668d40>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff1b5668dd0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff1b5668e60>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff1b56c1090>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1660328848.973456,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABxOz0bYPk+mpCqvWsik75vZRI6FNAYvgAAAAAAAAAAzZZJPfacErqWAFI8FfGvNt2ExbpPPrA1AACAPwAAgD8AA728FOyQuov0QDwpeIq19mIdukdDg7QAAIA/AACAP03lcD2Png66hT3ZOrSW2LO6Fkk64uMWswAAgD8AAIA/ABruPHuCirpd7sS6QGfOtekTtLouHOU5AACAPwAAgD9N3oq9KVBUuuPdQDwx4pA1MC5gO3OihjQAAIA/AACAPzNhWLyuBY26C8usOQGX+TVwgEQ6VJvIuAAAgD8AAIA/TbGyvY9eHrrrOAu7MVfatlGjj7saajI6AACAPwAAgD/NHBQ81p1pP/CFfL30+re+15G6vEB1rb0AAAAAAAAAABrVSr32jAq6nax1u9I6mTcHr406vpo4OgAAgD8AAIA/WlA/vn1nDz9plDo+XlCaviH+mD2wwVS9AAAAAAAAAACNqb89XNdkurp5ODtAw8MzI/luO9pSJzEAAIA/AACAP5qqGr1SuKa3FRO/upf4arh0sne7WF5rOQAAgD8AAIA/zWiLO49aHLoWTiG8p2qzNFtEb7uWrCK0AACAPwAAgD/NqbO8c9ysPujHr71H9V++FDgzvQUR27wAAAAAAAAAADOXjL1I/Zu6eguUOu97SLaFl/e6wis7tQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaoe/JmvVXkCUhpRSlIwBbJRN6AOMAXSUR0CWU5B55Z8sdX2UKGgGaAloD0MISP5g4LmYZkCUhpRSlGgVTegDaBZHQJZjkCRwIdF1fZQoaAZoCWgPQwgWFAZlmqllQJSGlFKUaBVN6ANoFkdAlmUcy8BdU3V9lChoBmgJaA9DCJLNVfMcBWRAlIaUUpRoFU3oA2gWR0CWbeQm/nGLdX2UKGgGaAloD0MI8Z4DyxGGZECUhpRSlGgVTegDaBZHQJZvi1kUbkx1fZQoaAZoCWgPQwhupddm45phQJSGlFKUaBVN6ANoFkdAlm/fQ0GeMHV9lChoBmgJaA9DCCyBlNg1oGJAlIaUUpRoFU3oA2gWR0CWcoGUwBYFdX2UKGgGaAloD0MIinQ/p6BLYUCUhpRSlGgVTegDaBZHQJZzYZ3s5XF1fZQoaAZoCWgPQwgbKzHPSnZhQJSGlFKUaBVN6ANoFkdAlnnutOmBOHV9lChoBmgJaA9DCLAcIQN59VlAlIaUUpRoFU3oA2gWR0CWelNRWLgodX2UKGgGaAloD0MI1A0UeKdbZkCUhpRSlGgVTegDaBZHQJZ6sebNKRN1fZQoaAZoCWgPQwh8R40JsTlgQJSGlFKUaBVN6ANoFkdAlntjRx95QnV9lChoBmgJaA9DCIC21awzg1pAlIaUUpRoFU3oA2gWR0CWfCKQ7tAtdX2UKGgGaAloD0MIDamieBWvYUCUhpRSlGgVTegDaBZHQJZ8fVNHpbF1fZQoaAZoCWgPQwi3mJ8bmghkQJSGlFKUaBVN6ANoFkdAln6qKgqVhXV9lChoBmgJaA9DCOIGfH4YumJAlIaUUpRoFU3oA2gWR0CWkcyDIzWPdX2UKGgGaAloD0MICRaHM79qQECUhpRSlGgVS/VoFkdAlpqFkhA4XHV9lChoBmgJaA9DCEvJchJKfzfAlIaUUpRoFU0OAWgWR0CWnGg5BC2MdX2UKGgGaAloD0MIOZm4VRA1YUCUhpRSlGgVTegDaBZHQJahhXFLnLd1fZQoaAZoCWgPQwgzh6QWSnxkQJSGlFKUaBVN6ANoFkdAlrBVfJFLFnV9lChoBmgJaA9DCEj8ijXcN2FAlIaUUpRoFU3oA2gWR0CWseIUrTYvdX2UKGgGaAloD0MI8YEd/wU+YECUhpRSlGgVTegDaBZHQJa7QXQ+lj51fZQoaAZoCWgPQwh39pUH6YZhQJSGlFKUaBVN6ANoFkdAlr0YYixFAnV9lChoBmgJaA9DCALTad0GQl5AlIaUUpRoFU3oA2gWR0CWvW8q4H5adX2UKGgGaAloD0MIi/1l9+TnZECUhpRSlGgVTegDaBZHQJbAOb+cYqJ1fZQoaAZoCWgPQwhccXFUbmZhQJSGlFKUaBVN6ANoFkdAlsEygoPTX3V9lChoBmgJaA9DCB43/G66S2JAlIaUUpRoFU3oA2gWR0CWyChXbM5fdX2UKGgGaAloD0MImu/gJw4AZECUhpRSlGgVTegDaBZHQJbIlamoBJZ1fZQoaAZoCWgPQwhgzQGCObdeQJSGlFKUaBVN6ANoFkdAlsj3nuAqeHV9lChoBmgJaA9DCJjCg2bXwFZAlIaUUpRoFU3oA2gWR0CWybRywOe8dX2UKGgGaAloD0MI6lvmdFm0XECUhpRSlGgVTegDaBZHQJbNYCfYjB51fZQoaAZoCWgPQwhQUIpW7oJmQJSGlFKUaBVN6ANoFkdAls4C5d4VynV9lChoBmgJaA9DCETC9/6GA2dAlIaUUpRoFU3oA2gWR0CW6xzRx95RdX2UKGgGaAloD0MIRFGgT+QyZECUhpRSlGgVTegDaBZHQJbtSLCN0eV1fZQoaAZoCWgPQwihaB7AIllDQJSGlFKUaBVNQwFoFkdAlu3UcGTs6nV9lChoBmgJaA9DCKSnyCHiMV5AlIaUUpRoFU3oA2gWR0CW8lRoAXEZdX2UKGgGaAloD0MImN7+XDRQNUCUhpRSlGgVTSABaBZHQJb/asU7CBR1fZQoaAZoCWgPQwiKARJNIIZiQJSGlFKUaBVN6ANoFkdAlwEKiGnGbXV9lChoBmgJaA9DCBrc1haew1lAlIaUUpRoFU3oA2gWR0CXApsSCe3AdX2UKGgGaAloD0MI0Lnb9dKvYkCUhpRSlGgVTegDaBZHQJcLfMcIZ651fZQoaAZoCWgPQwhk6xnCMdBgQJSGlFKUaBVN6ANoFkdAlw0p6yB063V9lChoBmgJaA9DCBuEud1LDWNAlIaUUpRoFU3oA2gWR0CXDXqpcX3ydX2UKGgGaAloD0MIdNL7xteFXkCUhpRSlGgVTegDaBZHQJcQLaAWi111fZQoaAZoCWgPQwiQvd79cQVhQJSGlFKUaBVN6ANoFkdAlxEJsCT2WnV9lChoBmgJaA9DCNbm/1VHUmFAlIaUUpRoFU3oA2gWR0CXFx1CPZIydX2UKGgGaAloD0MIfIDuy5mgXECUhpRSlGgVTegDaBZHQJcX6mrKeTV1fZQoaAZoCWgPQwgxQ+OJIORmQJSGlFKUaBVN6ANoFkdAlxihK15SnHV9lChoBmgJaA9DCCf4pumzrFxAlIaUUpRoFU3oA2gWR0CXHHcO9WZJdX2UKGgGaAloD0MIvobguAz2ZUCUhpRSlGgVTegDaBZHQJcdGHxjJ+51fZQoaAZoCWgPQwhJumbyzc4mQJSGlFKUaBVNIQFoFkdAlx9QydnTRnV9lChoBmgJaA9DCORqZFdalh/AlIaUUpRoFU0SAWgWR0CXOJFsYVIqdX2UKGgGaAloD0MIwHgGDf2AYkCUhpRSlGgVTegDaBZHQJc5X4j8k2R1fZQoaAZoCWgPQwiDpE+raNJiQJSGlFKUaBVN6ANoFkdAlzvGVeKKpHV9lChoBmgJaA9DCGzrp/+ss2BAlIaUUpRoFU3oA2gWR0CXP9+Lm6oVdX2UKGgGaAloD0MIZ2Ml5lmdP0CUhpRSlGgVTSoBaBZHQJdAJm7J4jd1fZQoaAZoCWgPQwiBsFOsmkphQJSGlFKUaBVN6ANoFkdAl0td0mtyP3V9lChoBmgJaA9DCJs90AoMBWdAlIaUUpRoFU3oA2gWR0CXTL2ZAprldX2UKGgGaAloD0MI8bvplh3nZECUhpRSlGgVTegDaBZHQJdODYukDZF1fZQoaAZoCWgPQwiA8nfvqCFiQJSGlFKUaBVN6ANoFkdAl1XxoduHe3V9lChoBmgJaA9DCD2CGynbzWJAlIaUUpRoFU3oA2gWR0CXV3DtPYWddX2UKGgGaAloD0MI+RQA4xkNYUCUhpRSlGgVTegDaBZHQJdXuk43m3h1fZQoaAZoCWgPQwgNxR1v8kViQJSGlFKUaBVN6ANoFkdAl1rnJHRTj3V9lChoBmgJaA9DCMvVj03y+GVAlIaUUpRoFU3oA2gWR0CXYrgxagVXdX2UKGgGaAloD0MIPE7RkdycZ0CUhpRSlGgVTegDaBZHQJdj5Tho/Rp1fZQoaAZoCWgPQwjeVKTC2KNlQJSGlFKUaBVN6ANoFkdAl2nSU5dWyXV9lChoBmgJaA9DCC4cCMkCg2ZAlIaUUpRoFU3oA2gWR0CXbR7QswtbdX2UKGgGaAloD0MI51YIq7ECXkCUhpRSlGgVTegDaBZHQJeHmnUDuBt1fZQoaAZoCWgPQwhk5gKXR49hQJSGlFKUaBVN6ANoFkdAl4iChew9q3V9lChoBmgJaA9DCP2hmSfXt2JAlIaUUpRoFU3oA2gWR0CXiy6f8MuwdX2UKGgGaAloD0MIz/i+uFRHZECUhpRSlGgVTegDaBZHQJeP8Oby6MB1fZQoaAZoCWgPQwiH/gkuVkJiQJSGlFKUaBVN6ANoFkdAl5BE5EMLGHV9lChoBmgJaA9DCD+toj+0FGNAlIaUUpRoFU3oA2gWR0CXnF1qFh5PdX2UKGgGaAloD0MImUuqtptFY0CUhpRSlGgVTegDaBZHQJed4gIQe3h1fZQoaAZoCWgPQwgZkSi0LHdiQJSGlFKUaBVN6ANoFkdAl59IFNcnmnV9lChoBmgJaA9DCF+VC5V/dGFAlIaUUpRoFU3oA2gWR0CXpzB42S+ydX2UKGgGaAloD0MI9+Y3TDRjZECUhpRSlGgVTegDaBZHQJeotqKxcFB1fZQoaAZoCWgPQwjyBpj5jq5kQJSGlFKUaBVN6ANoFkdAl6j/0/W1+nV9lChoBmgJaA9DCJuSrMPRhWBAlIaUUpRoFU3oA2gWR0CXrEoCdSVGdX2UKGgGaAloD0MIGsOcoE3oX0CUhpRSlGgVTegDaBZHQJe0IDr7fpF1fZQoaAZoCWgPQwhHPq946ppiQJSGlFKUaBVN6ANoFkdAl7T7JGOMl3V9lChoBmgJaA9DCP3ZjxSRyS9AlIaUUpRoFU0RAWgWR0CXuRMX7+DOdX2UKGgGaAloD0MIMzLIXYQeXkCUhpRSlGgVTegDaBZHQJe5aZqmCRR1fZQoaAZoCWgPQwicM6K0t81iQJSGlFKUaBVN6ANoFkdAl7yniR4hU3V9lChoBmgJaA9DCN5X5UJl0GBAlIaUUpRoFU3oA2gWR0CX1n4I8hcJdX2UKGgGaAloD0MIamgDsIGiY0CUhpRSlGgVTegDaBZHQJfXVdonKGN1fZQoaAZoCWgPQwjkafmBq9JBQJSGlFKUaBVNGwFoFkdAl9fbnLaEjHV9lChoBmgJaA9DCAjNrnsrqmJAlIaUUpRoFU3oA2gWR0CX2bYm9g4PdX2UKGgGaAloD0MI9gt2w7aKZUCUhpRSlGgVTegDaBZHQJfd9d0JWvN1fZQoaAZoCWgPQwgNGY9SCXdjQJSGlFKUaBVN6ANoFkdAl9484HX2/XV9lChoBmgJaA9DCC+Lic3HKWBAlIaUUpRoFU3oA2gWR0CX6jxgRbr1dX2UKGgGaAloD0MIdlPKayXVWkCUhpRSlGgVTegDaBZHQJfrtS5y2hJ1fZQoaAZoCWgPQwi7nX3lwSZiQJSGlFKUaBVN6ANoFkdAl+0ZPqLS/nV9lChoBmgJaA9DCB1yM9yAyWRAlIaUUpRoFU3oA2gWR0CX9ZjjaPCEdX2UKGgGaAloD0MIQPm7d1RoZkCUhpRSlGgVTegDaBZHQJf3Ipw0fo11fZQoaAZoCWgPQwiSdTi6SrlEQJSGlFKUaBVL/2gWR0CX+gGO+7DmdX2UKGgGaAloD0MIAwZJn1YzZ0CUhpRSlGgVTegDaBZHQJf7DesPrfN1fZQoaAZoCWgPQwiCHJQw0+JjQJSGlFKUaBVN6ANoFkdAmAPQSvkilnV9lChoBmgJaA9DCHEgJAuYdmFAlIaUUpRoFU3oA2gWR0CYB9X7tRekdX2UKGgGaAloD0MIO2743XR8ZUCUhpRSlGgVTegDaBZHQJgIMMVk+X91fZQoaAZoCWgPQwgKStHKPS1iQJSGlFKUaBVN6ANoFkdAmAtKkM1CPnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 176,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c85d74128a8af46d04ec18c8ca20bb8f1ad42f4a14d991fd904eb79ac1309178
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18d4f5b7af779326de9d7f027dafaadcd5257a5848e7351465a3ba9a686e37e7
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (259 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 242.35345049873422, "std_reward": 19.992302258972085, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-12T18:53:36.609656"}