--- language: - en license: llama3.2 library_name: transformers base_model: - meta-llama/Llama-3.2-1B-Instruct - Llama-3.2-SUN-2.5B-chat datasets: - argilla/OpenHermesPreferences - argilla/magpie-ultra-v0.1 - argilla/Capybara-Preferences-Filtered - mlabonne/open-perfectblend - HuggingFaceTB/everyday-conversations-llama3.1-2k - WizardLMTeam/WizardLM_evol_instruct_V2_196k - ProlificAI/social-reasoning-rlhf - allenai/tulu-3-sft-mixture - allenai/llama-3.1-tulu-3-8b-preference-mixture pipeline_tag: text-generation model-index: - name: Llama-3.2-SUN-1B-Instruct results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 64.13 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 9.18 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 4.61 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 0.0 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 4.05 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 8.68 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct name: Open LLM Leaderboard --- # MedIT SUN 1B Instruct
Llama-3.2-MedIT-SUN-2.5B
**Base Model** - Llama 3.2 1B -> MedIT SUN 2.5B -> MedIT SUN 1B -> Knowledge Injection from Llama 3.1 8B Instruct **Mesh Size** - 1B to 2.5B parameters [MedIT SUN 2.5B](https://huggingface.co/meditsolutions/Llama-3.2-SUN-2.5B-chat) -> layers mesh using MedIT-mesh technique and downscaled to 1B **Extension Method** - Proprietary technique developed by MedIT Solutions **Fine-tuning** - Open (or open subsets allowing for commercial use) open datasets from HF - Open (or open subsets allowing for commercial use) SFT datasets from HF **Training Status** - Current version: instruct-1.0.0 **Key Features** - Built on Llama 3.2 architecture - Upscaled from 1B to 2.47B parameters - Optimized for open-ended conversations - Incorporates supervised fine-tuning for improved performance - Layers meshing using the MedIT-mesh technique - Downscaled to 1B - Knowledge injection from Llama 3.1 8B Instruct using new technique developed by MedIT Solutions **Use Case** - General conversation and task-oriented interactions **Limitations** As the model is still in training, performance and capabilities may vary. Users should be aware that the model is not in its final form and may exhibit inconsistencies or limitations typical of in-progress AI models. **Disclaimer and Safety Considerations** The Model is designed to be used as a smart assistant but not as a knowledge source within your applications, systems, or environments. It is not intended to provide 100% accurate answers, especially in scenarios where high precision and accuracy are # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meditsolutions__Llama-3.2-SUN-1B-Instruct) | Metric |Value| |-------------------|----:| |Avg. |15.11| |IFEval (0-Shot) |64.13| |BBH (3-Shot) | 9.18| |MATH Lvl 5 (4-Shot)| 4.61| |GPQA (0-shot) | 0.00| |MuSR (0-shot) | 4.05| |MMLU-PRO (5-shot) | 8.68|