File size: 2,710 Bytes
75568bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: DanSumT5-largeV_38143V_15157V_96478
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DanSumT5-largeV_38143V_15157V_96478

This model is a fine-tuned version of [emilstabil/DanSumT5-largeV_38143V_15157](https://huggingface.co/emilstabil/DanSumT5-largeV_38143V_15157) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9819
- Rouge1: 35.982
- Rouge2: 12.5438
- Rougel: 22.7137
- Rougelsum: 33.5334
- Gen Len: 124.173

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 0.99  | 118  | 1.9875          | 35.6378 | 12.3785 | 22.4666 | 33.224    | 123.1814 |
| No log        | 2.0   | 237  | 1.9991          | 35.9161 | 12.5761 | 22.7594 | 33.6048   | 123.5865 |
| No log        | 3.0   | 356  | 1.9994          | 36.0651 | 12.7545 | 22.9642 | 33.6968   | 123.6203 |
| No log        | 4.0   | 475  | 1.9980          | 35.9273 | 12.6691 | 22.818  | 33.609    | 123.4515 |
| 1.4198        | 4.99  | 593  | 2.0076          | 35.5438 | 12.2242 | 22.5019 | 33.237    | 123.7257 |
| 1.4198        | 6.0   | 712  | 2.0032          | 36.0019 | 12.7386 | 22.9014 | 33.7588   | 124.5443 |
| 1.4198        | 7.0   | 831  | 2.0001          | 35.8585 | 12.7149 | 22.8298 | 33.6196   | 124.4008 |
| 1.4198        | 8.0   | 950  | 1.9945          | 35.6975 | 12.4727 | 22.6524 | 33.3949   | 124.5316 |
| 1.4397        | 8.99  | 1068 | 1.9898          | 35.944  | 12.6829 | 22.9022 | 33.5212   | 124.1181 |
| 1.4397        | 10.0  | 1187 | 1.9843          | 36.0341 | 12.5681 | 22.7855 | 33.5415   | 124.0084 |
| 1.4397        | 10.93 | 1298 | 1.9819          | 35.982  | 12.5438 | 22.7137 | 33.5334   | 124.173  |


### Framework versions

- Transformers 4.30.2
- Pytorch 1.12.1+git7548e2f
- Datasets 2.13.2
- Tokenizers 0.13.3