File size: 1,187 Bytes
75568bd
 
 
 
 
 
 
45db536
75568bd
45db536
a5473c6
 
75568bd
 
45db536
 
 
 
 
 
 
 
75568bd
 
 
b71db0e
75568bd
b71db0e
 
5bacc52
75568bd
45db536
a5473c6
 
 
75568bd
 
 
 
 
 
45db536
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: DaMedSum-large
  results: []
pipeline_tag: summarization
language:
- da
---

```
 _____    ______   __    __   ______   _____    ______   __  __   __    __    
/\  __-. /\  __ \ /\ "-./  \ /\  ___\ /\  __-. /\  ___\ /\ \/\ \ /\ "-./  \   
\ \ \/\ \\ \  __ \\ \ \-./\ \\ \  __\ \ \ \/\ \\ \___  \\ \ \_\ \\ \ \-./\ \  
 \ \____- \ \_\ \_\\ \_\ \ \_\\ \_____\\ \____- \/\_____\\ \_____\\ \_\ \ \_\ 
  \/____/  \/_/\/_/ \/_/  \/_/ \/_____/ \/____/  \/_____/ \/_____/ \/_/  \/_/ 
                                                                                                                                                                        
```

## Model description

This repository contains a model for Danish abstractive summarisation of medical text.

This model is a fine-tuned version of DanSumT5-large trained on a danish medical text dataset.

The model was trained on LUMI using 1 AMD MI250X GPU. 

## Authors
Nicolaj Larsen   
Mikkel Kildeberg   
Emil Schledermann   

### Framework versions

- Transformers 4.30.2
- Pytorch 1.12.1+git7548e2f
- Datasets 2.13.2
- Tokenizers 0.13.3