--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: DaMedSum-large results: [] pipeline_tag: summarization --- ``` _____ ______ __ __ ______ _____ ______ __ __ __ __ /\ __-. /\ __ \ /\ "-./ \ /\ ___\ /\ __-. /\ ___\ /\ \/\ \ /\ "-./ \ \ \ \/\ \\ \ __ \\ \ \-./\ \\ \ __\ \ \ \/\ \\ \___ \\ \ \_\ \\ \ \-./\ \ \ \____- \ \_\ \_\\ \_\ \ \_\\ \_____\\ \____- \/\_____\\ \_____\\ \_\ \ \_\ \/____/ \/_/\/_/ \/_/ \/_/ \/_____/ \/____/ \/_____/ \/_____/ \/_/ \/_/ ``` ## Model description This repository contains a model for Danish abstractive summarisation of medical text. This model is a fine-tuned version of DanSumT5-large trained on a danish medical text dataset. The model was trained on 1 AMD MI250X GPU. ## Authors Nicolaj Larsen, Mikkel Kildeberg & Emil Schledermann ### Framework versions - Transformers 4.30.2 - Pytorch 1.12.1+git7548e2f - Datasets 2.13.2 - Tokenizers 0.13.3