File size: 2,712 Bytes
6a82730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: DanSumT5-smallV_45767V_52355V_7660
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DanSumT5-smallV_45767V_52355V_7660

This model is a fine-tuned version of [emilstabil/DanSumT5-smallV_45767V_52355](https://huggingface.co/emilstabil/DanSumT5-smallV_45767V_52355) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3932
- Rouge1: 34.5352
- Rouge2: 11.9341
- Rougel: 21.4899
- Rougelsum: 32.0084
- Gen Len: 126.2447

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:|
| No log        | 0.99  | 47   | 2.4069          | 34.5802 | 11.8249 | 21.4672 | 32.0387   | 125.9072 |
| No log        | 2.0   | 95   | 2.4024          | 34.3627 | 11.7441 | 21.2184 | 31.8869   | 126.0042 |
| No log        | 2.99  | 142  | 2.4040          | 34.2328 | 11.5022 | 21.2019 | 31.7474   | 125.9958 |
| No log        | 4.0   | 190  | 2.4002          | 34.3259 | 11.5709 | 21.2498 | 31.8805   | 126.2068 |
| No log        | 4.99  | 237  | 2.3988          | 34.3771 | 11.5555 | 21.3218 | 31.8772   | 125.9367 |
| No log        | 6.0   | 285  | 2.3983          | 34.4098 | 11.6914 | 21.3358 | 31.9277   | 126.3333 |
| No log        | 6.99  | 332  | 2.3960          | 34.5531 | 11.8207 | 21.4971 | 32.0056   | 126.616  |
| No log        | 8.0   | 380  | 2.3952          | 34.3497 | 11.7249 | 21.3948 | 31.8378   | 126.789  |
| No log        | 8.99  | 427  | 2.3935          | 34.4175 | 11.9061 | 21.4974 | 31.9233   | 126.6329 |
| No log        | 10.0  | 475  | 2.3935          | 34.5727 | 11.9325 | 21.5313 | 32.0453   | 126.2447 |
| 2.5639        | 10.88 | 517  | 2.3932          | 34.5352 | 11.9341 | 21.4899 | 32.0084   | 126.2447 |


### Framework versions

- Transformers 4.30.2
- Pytorch 1.12.1+git7548e2f
- Datasets 2.13.2
- Tokenizers 0.13.3