File size: 6,580 Bytes
368da34
6327994
 
 
368da34
 
4efd183
ad283e8
23ecbf4
fbe5fcf
d63fd4f
900107e
bfd94da
 
fbe5fcf
 
3d112c8
ad5e82c
 
b1b96a8
4efd183
6cdd2d5
ad283e8
4efd183
0d5e6ab
 
 
 
 
 
4efd183
 
 
02275a6
 
 
 
 
 
4efd183
 
 
0d5e6ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100bcde
 
 
4efd183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d5e6ab
e9cd862
0d5e6ab
 
75348fb
0d5e6ab
 
2002129
0d5e6ab
1d24d36
 
 
0d5e6ab
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
language: 
- ar
- en
license: apache-2.0
datasets:
- AQMAR
- ANERcorp
thumbnail: https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/resolveuid/a6f82e0d7fa446a59c902cac4cafa9cb/@@images/image/preview
tags:
- flair
- Text Classification
- token-classification
- sequence-tagger-model
metrics:
- f1
widget:
- text: أعرف كل شيء عن جيجي
- text: ترتقي شريحة M1 Pro وشريحة M1 Max ببنية شريحة M1 المذهلة إلى مستويات جديدة، إذ تأتيان للمرة الأولى ببنية نظام متكامل في شريحة (SoC) إلى جهاز نوت بوك للمحترفين.
- text: "اختارها خيري بشارة كممثلة، دون سابقة معرفة أو تجربة تمثيلية، لتقف بجانب فاتن حمامة في فيلم «يوم مر ويوم حلو» (1988) وهي ما زالت شابة لم تتخطَ عامها الثاني"
---
# Arabic NER Model using Flair Embeddings
Training was conducted over 94 epochs, using a linear decaying learning rate of 2e-05, starting from 0.225 and a batch size of 32 with GloVe and Flair forward and backward embeddings.


## Original Datasets:
- [AQMAR](http://www.cs.cmu.edu/~ark/ArabicNER/)
- [ANERcorp](http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp)

## Results:
- F1-score (micro) 0.8666
- F1-score (macro) 0.8488

|      | Named Entity Type    | True Posititves  | False Positives | False Negatives | Precision | Recall | class-F1 |
|------|-|----|----|----|-----------|--------|----------|
| LOC  | Location| 539 | 51 | 68 | 0.9136    | 0.8880 | 0.9006   |
| MISC | Miscellaneous|408 | 57 | 89 | 0.8774    | 0.8209 | 0.8482   |
| ORG  | Organisation|167 | 43 | 64 | 0.7952    | 0.7229 | 0.7574   |
| PER  | Person (no title)|501 | 65 | 60 | 0.8852    | 0.8930 | 0.8891   |

---

# Usage
```python
from flair.data import Sentence
from flair.models import SequenceTagger
import pyarabic.araby as araby
from icecream import ic

tagger = SequenceTagger.load("julien-c/flair-ner")
arTagger = SequenceTagger.load('megantosh/flair-arabic-multi-ner')

sentence = Sentence('George Washington went to Washington .')
arSentence = Sentence('عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية  بالقاهرة .')


# predict NER tags
tagger.predict(sentence)
arTagger.predict(arSentence)

# print sentence with predicted tags
ic(sentence.to_tagged_string)
ic(arSentence.to_tagged_string)

```

# Example
```bash
2021-07-07 14:30:59,649 loading file /Users/mega/.flair/models/flair-ner/f22eb997f66ae2eacad974121069abaefca5fe85fce71b49e527420ff45b9283.941c7c30b38aef8d8a4eb5c1b6dd7fe8583ff723fef457382589ad6a4e859cfc
2021-07-07 14:31:04,654 loading file /Users/mega/.flair/models/flair-arabic-multi-ner/c7af7ddef4fdcc681fcbe1f37719348afd2862b12aa1cfd4f3b93bd2d77282c7.242d030cb106124f7f9f6a88fb9af8e390f581d42eeca013367a86d585ee6dd6
ic| sentence.to_tagged_string: <bound method Sentence.to_tagged_string of Sentence: "George Washington went to Washington ."   [− Tokens: 6  − Token-Labels: "George <B-PER> Washington <E-PER> went to Washington <S-LOC> ."]>
ic| arSentence.to_tagged_string: <bound method Sentence.to_tagged_string of Sentence: "عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة ."   [− Tokens: 11  − Token-Labels: "عمرو <B-PER> عادلي <I-PER> أستاذ للاقتصاد السياسي المساعد في الجامعة <B-ORG> الأمريكية <I-ORG> بالقاهرة <B-LOC> ."]>
ic| entity: <PER-span (1,2): "George Washington">
ic| entity: <LOC-span (5): "Washington">
ic| entity: <PER-span (1,2): "عمرو عادلي">
ic| entity: <ORG-span (8,9): "الجامعة الأمريكية">
ic| entity: <LOC-span (10): "بالقاهرة">
ic| sentence.to_dict(tag_type='ner'): 
{"text":"عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية  بالقاهرة .",
"labels":[],
{"entities":[{{{
               "text":"عمرو عادلي",
               "start_pos":0,
               "end_pos":10,
               "labels":[PER (0.9826)]},
            {"text":"الجامعة الأمريكية",
               "start_pos":45,
               "end_pos":62,
               "labels":[ORG (0.7679)]},
            {"text":"بالقاهرة",
               "start_pos":64,
               "end_pos":72,
               "labels":[LOC (0.8079)]}]}
"text":"George Washington went to Washington .",
"labels":[],
"entities":[{
           {"text":"George Washington",
            "start_pos":0,
            "end_pos":17,
            "labels":[PER (0.9968)]},
           {"text":"Washington""start_pos":26,
            "end_pos":36,
            "labels":[LOC (0.9994)]}}]}
```

# Model Configuration
```python
SequenceTagger(
  (embeddings): StackedEmbeddings(
    (list_embedding_0): WordEmbeddings('glove')
    (list_embedding_1): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(7125, 100)
        (rnn): LSTM(100, 2048)
        (decoder): Linear(in_features=2048, out_features=7125, bias=True)
      )
    )
    (list_embedding_2): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.1, inplace=False)
        (encoder): Embedding(7125, 100)
        (rnn): LSTM(100, 2048)
        (decoder): Linear(in_features=2048, out_features=7125, bias=True)
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=4196, out_features=4196, bias=True)
  (rnn): LSTM(4196, 256, batch_first=True, bidirectional=True)
  (linear): Linear(in_features=512, out_features=15, bias=True)
  (beta): 1.0
  (weights): None
  (weight_tensor) None
 ```
 Due to the right-to-left in left-to-right context, some formatting errors might occur. and your code might appear like [this](https://ibb.co/ky20Lnq), (link accessed on 2020-10-27) 
 
 # Citation
*if you use this model, please consider citing [this work](https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects):*
```latex
@unpublished{MMHU21
author = "M. Megahed",
title = "Sequence Labeling Architectures in Diglossia",
year = {2021},
doi = "10.13140/RG.2.2.34961.10084"
url = {https://www.researchgate.net/publication/358956953_Sequence_Labeling_Architectures_in_Diglossia_-_a_case_study_of_Arabic_and_its_dialects}
}
```