--- language: ar license: apache-2.0 datasets: - AQMAR - ANERcorp thumbnail: https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/resolveuid/a6f82e0d7fa446a59c902cac4cafa9cb/@@images/image/preview tags: - flair - Text Classification metrics: - f1 widget: - text: "لائحة «الوطنية للصحافة».. خطوة جديدة في طريق «الحصار»" --- # Arabic NER Model using Flair Embeddings Training was conducted over 94 epochs, using a linear decaying learning rate of 2e-05, starting from 0.225 and a batch size of 32 with GloVe and Flair forward and backward embeddings. ## Original Datasets: - [AQMAR](http://www.cs.cmu.edu/~ark/ArabicNER/) - [ANERcorp](http://curtis.ml.cmu.edu/w/courses/index.php/ANERcorp) ## Results: - F1-score (micro) 0.8666 - F1-score (macro) 0.8488 | | True Posititves | False Positives | False Negatives | Precision | Recall | class-F1 | |------|-----|----|----|-----------|--------|----------| | LOC | 539 | 51 | 68 | 0.9136 | 0.8880 | 0.9006 | | MISC | 408 | 57 | 89 | 0.8774 | 0.8209 | 0.8482 | | ORG | 167 | 43 | 64 | 0.7952 | 0.7229 | 0.7574 | | PER | 501 | 65 | 60 | 0.8852 | 0.8930 | 0.8891 | --- # Usage ```python from flair.data import Sentence from flair.models import SequenceTagger import pyarabic.araby as araby from flair.tokenization import JapaneseTokenizer from icecream import ic tagger = SequenceTagger.load("julien-c/flair-ner") arTagger = SequenceTagger.load('megantosh/flair-arabic-multi-ner') sentence = Sentence('George Washington went to Washington .') arSentence = Sentence('عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة .') # predict NER tags tagger.predict(sentence) arTagger.predict(arSentence) # print sentence with predicted tags ic(sentence.to_tagged_string) ic(arSentence.to_tagged_string) ``` # Example ```bash 2021-07-07 14:30:59,649 loading file /Users/mega/.flair/models/flair-ner/f22eb997f66ae2eacad974121069abaefca5fe85fce71b49e527420ff45b9283.941c7c30b38aef8d8a4eb5c1b6dd7fe8583ff723fef457382589ad6a4e859cfc 2021-07-07 14:31:04,654 loading file /Users/mega/.flair/models/flair-arabic-multi-ner/c7af7ddef4fdcc681fcbe1f37719348afd2862b12aa1cfd4f3b93bd2d77282c7.242d030cb106124f7f9f6a88fb9af8e390f581d42eeca013367a86d585ee6dd6 ic| sentence.to_tagged_string: Washington went to Washington ."]> ic| arSentence.to_tagged_string: عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة ."]> ic| entity: ic| entity: ic| entity: ic| entity: ic| entity: ic| sentence.to_dict(tag_type='ner'): {"text":"عمرو عادلي أستاذ للاقتصاد السياسي المساعد في الجامعة الأمريكية بالقاهرة .", "labels":[], {"entities":[{{{ "text":"عمرو عادلي", "start_pos":0, "end_pos":10, "labels":[PER (0.9826)]}, {"text":"الجامعة الأمريكية", "start_pos":45, "end_pos":62, "labels":[ORG (0.7679)]}, {"text":"بالقاهرة", "start_pos":64, "end_pos":72, "labels":[LOC (0.8079)]}]} "text":"George Washington went to Washington .", "labels":[], "entities":[{ {"text":"George Washington", "start_pos":0, "end_pos":17, "labels":[PER (0.9968)]}, {"text":"Washington""start_pos":26, "end_pos":36, "labels":[LOC (0.9994)]}}]} ``` # Configuration ``` 2020-10-27 12:05:47,801 Model: "SequenceTagger( (embeddings): StackedEmbeddings( (list_embedding_0): WordEmbeddings('glove') (list_embedding_1): FlairEmbeddings( (lm): LanguageModel( (drop): Dropout(p=0.1, inplace=False) (encoder): Embedding(7125, 100) (rnn): LSTM(100, 2048) (decoder): Linear(in_features=2048, out_features=7125, bias=True) ) ) (list_embedding_2): FlairEmbeddings( (lm): LanguageModel( (drop): Dropout(p=0.1, inplace=False) (encoder): Embedding(7125, 100) (rnn): LSTM(100, 2048) (decoder): Linear(in_features=2048, out_features=7125, bias=True) ) ) ) (word_dropout): WordDropout(p=0.05) (locked_dropout): LockedDropout(p=0.5) (embedding2nn): Linear(in_features=4196, out_features=4196, bias=True) (rnn): LSTM(4196, 256, batch_first=True, bidirectional=True) (linear): Linear(in_features=512, out_features=15, bias=True) (beta): 1.0 (weights): None (weight_tensor) None ``` # Citation *if you use this model in your work, please consider citing this work:* ```latex @unpublished{MMHU21 author = "M. Megahed and A. Akbik", title = "Sequence Labeling Architectures in Diglossia", note = "In preparation", } ```