--- language: ar license: apache-2.0 datasets: - AQMAR - ANERcorp thumbnail: https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/ml-en/resolveuid/a6f82e0d7fa446a59c902cac4cafa9cb/@@images/image/preview tags: - flair - Text Classification metrics: - f1 widget: - text: "لائحة «الوطنية للصحافة».. خطوة جديدة في طريق «الحصار»" --- # Arabic NER Model using Flair Embeddings Training was conducted over 94 epochs, using a linear decaying learning rate of 2e-05, starting from 0.225 and a batch size of 32 with GloVe and Flair forward and backward embeddings. Results: - F1-score (micro) 0.8666 - F1-score (macro) 0.8488 | | tp | fp | fn | precision | recall | class-F1 | |------|-----|----|----|-----------|--------|----------| | LOC | 539 | 51 | 68 | 0.9136 | 0.8880 | 0.9006 | | MISC | 408 | 57 | 89 | 0.8774 | 0.8209 | 0.8482 | | ORG | 167 | 43 | 64 | 0.7952 | 0.7229 | 0.7574 | | PER | 501 | 65 | 60 | 0.8852 | 0.8930 | 0.8891 | --- ``` 2020-10-27 12:05:47,801 Model: "SequenceTagger( (embeddings): StackedEmbeddings( (list_embedding_0): WordEmbeddings('glove') (list_embedding_1): FlairEmbeddings( (lm): LanguageModel( (drop): Dropout(p=0.1, inplace=False) (encoder): Embedding(7125, 100) (rnn): LSTM(100, 2048) (decoder): Linear(in_features=2048, out_features=7125, bias=True) ) ) (list_embedding_2): FlairEmbeddings( (lm): LanguageModel( (drop): Dropout(p=0.1, inplace=False) (encoder): Embedding(7125, 100) (rnn): LSTM(100, 2048) (decoder): Linear(in_features=2048, out_features=7125, bias=True) ) ) ) (word_dropout): WordDropout(p=0.05) (locked_dropout): LockedDropout(p=0.5) (embedding2nn): Linear(in_features=4196, out_features=4196, bias=True) (rnn): LSTM(4196, 256, batch_first=True, bidirectional=True) (linear): Linear(in_features=512, out_features=15, bias=True) (beta): 1.0 (weights): None (weight_tensor) None ```