--- license: apache-2.0 tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-1000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 64.0048 --- # opus-mt-en-ar-evaluated-en-to-ar-1000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.1294 - Bleu: 64.0048 - Meteor: 0.4903 - Gen Len: 21.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.0489 | 1.0 | 100 | 0.1287 | 63.7573 | 0.4877 | 21.79 | | 0.0447 | 2.0 | 200 | 0.1293 | 63.8776 | 0.49 | 21.875 | | 0.0442 | 3.0 | 300 | 0.1294 | 64.0048 | 0.4903 | 21.85 | | 0.0433 | 4.0 | 400 | 0.1294 | 64.0048 | 0.4903 | 21.85 | | 0.0429 | 5.0 | 500 | 0.1294 | 64.0048 | 0.4903 | 21.85 | | 0.0435 | 6.0 | 600 | 0.1294 | 64.0048 | 0.4903 | 21.85 | | 0.0429 | 7.0 | 700 | 0.1294 | 64.0048 | 0.4903 | 21.85 | | 0.0426 | 8.0 | 800 | 0.1294 | 64.0048 | 0.4903 | 21.85 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1