--- license: apache-2.0 tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 53.0137 --- # opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.1873 - Bleu: 53.0137 - Meteor: 0.5005 - Gen Len: 25.845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.6585 | 0.5 | 100 | 0.2085 | 52.5874 | 0.4969 | 25.485 | | 0.1802 | 1.0 | 200 | 0.1788 | 52.9434 | 0.4982 | 25.1725 | | 0.1501 | 1.5 | 300 | 0.1683 | 53.6994 | 0.5033 | 25.625 | | 0.1454 | 2.0 | 400 | 0.1706 | 53.3946 | 0.5005 | 25.6675 | | 0.1193 | 2.5 | 500 | 0.1774 | 53.2011 | 0.4982 | 25.58 | | 0.1194 | 3.0 | 600 | 0.1741 | 53.8651 | 0.5026 | 25.5775 | | 0.1002 | 3.5 | 700 | 0.1878 | 53.1332 | 0.5005 | 25.8975 | | 0.0979 | 4.0 | 800 | 0.1881 | 52.5989 | 0.4974 | 25.485 | | 0.0807 | 4.5 | 900 | 0.1873 | 53.0137 | 0.5005 | 25.845 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1