File size: 6,010 Bytes
15f33eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153b7a0
 
 
 
 
15f33eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153b7a0
 
15f33eb
 
 
 
153b7a0
15f33eb
 
 
 
 
 
153b7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15f33eb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: mit
base_model: FacebookAI/xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
- precision
- recall
model-index:
- name: fine_tuned_roberta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_roberta

This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3144
- F1: 0.44
- F5: 0.5013
- Precision: 0.3333
- Recall: 0.6471

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | F5     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:|:------:|
| No log        | 1.0   | 9    | 0.3437          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 2.0   | 18   | 0.3128          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 3.0   | 27   | 0.3089          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 4.0   | 36   | 0.3058          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 5.0   | 45   | 0.2960          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 6.0   | 54   | 0.2744          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 7.0   | 63   | 0.2674          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 8.0   | 72   | 0.2744          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 9.0   | 81   | 0.2745          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 10.0  | 90   | 0.2849          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 11.0  | 99   | 0.3079          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 12.0  | 108  | 0.2686          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 13.0  | 117  | 0.2856          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 14.0  | 126  | 0.3047          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 15.0  | 135  | 0.2697          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 16.0  | 144  | 0.2783          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 17.0  | 153  | 0.2816          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 18.0  | 162  | 0.2660          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 19.0  | 171  | 0.3168          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 20.0  | 180  | 0.2796          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 21.0  | 189  | 0.2956          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 22.0  | 198  | 0.2610          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 23.0  | 207  | 0.2680          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 24.0  | 216  | 0.2836          | 0.0    | 0.0    | 0.0       | 0.0    |
| No log        | 25.0  | 225  | 0.2841          | 0.0588 | 0.0499 | 0.1111    | 0.04   |
| No log        | 26.0  | 234  | 0.3023          | 0.2128 | 0.2077 | 0.2273    | 0.2    |
| No log        | 27.0  | 243  | 0.3097          | 0.2903 | 0.3135 | 0.2432    | 0.36   |
| No log        | 28.0  | 252  | 0.3118          | 0.2963 | 0.3049 | 0.2759    | 0.32   |
| No log        | 29.0  | 261  | 0.3110          | 0.3256 | 0.3065 | 0.3889    | 0.28   |
| No log        | 30.0  | 270  | 0.3261          | 0.2927 | 0.2700 | 0.375     | 0.24   |
| No log        | 31.0  | 279  | 0.3167          | 0.4    | 0.4144 | 0.3667    | 0.44   |
| No log        | 32.0  | 288  | 0.2997          | 0.2857 | 0.2663 | 0.3529    | 0.24   |
| No log        | 33.0  | 297  | 0.3202          | 0.3385 | 0.3712 | 0.275     | 0.44   |
| No log        | 34.0  | 306  | 0.2841          | 0.3922 | 0.3951 | 0.3846    | 0.4    |
| No log        | 35.0  | 315  | 0.3986          | 0.4048 | 0.4788 | 0.2881    | 0.68   |
| No log        | 36.0  | 324  | 0.2881          | 0.4082 | 0.4050 | 0.4167    | 0.4    |
| No log        | 37.0  | 333  | 0.2719          | 0.3500 | 0.3195 | 0.4667    | 0.28   |
| No log        | 38.0  | 342  | 0.3239          | 0.4615 | 0.5062 | 0.375     | 0.6    |
| No log        | 39.0  | 351  | 0.2652          | 0.4906 | 0.5014 | 0.4643    | 0.52   |
| No log        | 40.0  | 360  | 0.2813          | 0.5    | 0.5213 | 0.4516    | 0.56   |
| No log        | 41.0  | 369  | 0.3664          | 0.4507 | 0.5081 | 0.3478    | 0.64   |
| No log        | 42.0  | 378  | 0.2577          | 0.4651 | 0.4379 | 0.5556    | 0.4    |
| No log        | 43.0  | 387  | 0.3193          | 0.4928 | 0.5507 | 0.3864    | 0.68   |
| No log        | 44.0  | 396  | 0.2627          | 0.4615 | 0.4684 | 0.4444    | 0.48   |
| No log        | 45.0  | 405  | 0.2850          | 0.4643 | 0.4841 | 0.4194    | 0.52   |
| No log        | 46.0  | 414  | 0.2971          | 0.5574 | 0.5986 | 0.4722    | 0.68   |
| No log        | 47.0  | 423  | 0.2804          | 0.5185 | 0.5336 | 0.4828    | 0.56   |
| No log        | 48.0  | 432  | 0.2845          | 0.5091 | 0.5274 | 0.4667    | 0.56   |
| No log        | 49.0  | 441  | 0.3005          | 0.5312 | 0.5797 | 0.4359    | 0.68   |
| No log        | 50.0  | 450  | 0.2981          | 0.5079 | 0.5514 | 0.4211    | 0.64   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.17.1
- Tokenizers 0.15.2