--- library_name: peft tags: - generated_from_trainer base_model: NousResearch/Llama-2-7b-chat-hf metrics: - accuracy - precision - recall - f1 model-index: - name: llama-ai-detector results: [] --- # llama-ai-detector This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Accuracy: 0.94 - Precision: 0.9717 - Recall: 0.9365 - F1: 0.9538 - Pearson: 0.8696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Pearson | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | No log | 1.0 | 313 | 0.2239 | 0.924 | 0.9479 | 0.9365 | 0.9422 | 0.8315 | | 0.2965 | 2.0 | 626 | 0.1959 | 0.94 | 0.9717 | 0.9365 | 0.9538 | 0.8696 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1