--- library_name: transformers license: mit base_model: VietAI/vit5-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: ViNormT5 results: [] --- # ViNormT5 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2324 - Bleu Score: 79.5557 - Precision: 100.0 - Recall: 93.3333 - Gen Len: 12.7969 - Err: 56.9892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall | Gen Len | Err | |:-------------:|:-----:|:----:|:---------------:|:----------:|:---------:|:-------:|:-------:|:-------:| | 0.4672 | 1.0 | 419 | 0.2390 | 76.7871 | 100.0 | 100.0 | 12.8292 | 49.7013 | | 0.1742 | 2.0 | 838 | 0.2173 | 77.9698 | 100.0 | 93.3333 | 12.8076 | 54.0024 | | 0.0814 | 3.0 | 1257 | 0.2010 | 79.204 | 100.0 | 93.3333 | 12.7754 | 56.6308 | | 0.0382 | 4.0 | 1676 | 0.2324 | 79.5557 | 100.0 | 93.3333 | 12.7969 | 56.9892 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0