File size: 1,786 Bytes
4cc177e
 
 
36da2bb
4cc177e
 
a51f0bc
 
 
4cc177e
 
 
 
 
 
 
 
 
 
36da2bb
4cc177e
36da2bb
 
 
 
 
 
4cc177e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36da2bb
4cc177e
 
 
a51f0bc
 
36da2bb
 
 
4cc177e
 
 
 
a51f0bc
4cc177e
a51f0bc
4cc177e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: mT5_base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mT5_base

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1703
- Bleu Score: 51.176
- Precision: 27.4791
- Recall: 27.4791
- Gen Len: 16.8805
- Err: 27.4791

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall  | Gen Len | Err     |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:---------:|:-------:|:-------:|:-------:|
| 1.3269        | 1.0   | 838  | 0.2396          | 48.4521    | 20.7885   | 20.7885 | 16.8339 | 20.7885 |
| 0.2831        | 2.0   | 1676 | 0.1861          | 50.5118    | 26.1649   | 26.1649 | 16.8781 | 26.1649 |
| 0.2167        | 3.0   | 2514 | 0.1703          | 51.176     | 27.4791   | 27.4791 | 16.8805 | 27.4791 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0