File size: 2,216 Bytes
8cc8f3d a196ffa 8cc8f3d a196ffa 5990064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
pipeline_tag: object-detection
---
# YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
This is the model repository for YOLOv9, containing the following checkpoints:
- GELAN-C (a newer, lighter architecture)
- GELAN-E
- YOLO9-C
- YOLO9-E
### How to Use
Clone YOLOv9 repository.
```
git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
```
Download the weights using `hf_hub_download` and use the loading function in helpers of YOLOv9.
```python
from huggingface_hub import hf_hub_download
hf_hub_download("merve/yolov9", filename="yolov9-c.pt", local_dir="./")
```
Load the model.
```python
# make sure you have the following dependencies
import torch
import numpy as np
from models.common import DetectMultiBackend
from utils.general import non_max_suppression, scale_boxes
from utils.torch_utils import select_device, smart_inference_mode
from utils.augmentations import letterbox
import PIL.Image
@smart_inference_mode()
def predict(image_path, weights='yolov9-c.pt', imgsz=640, conf_thres=0.1, iou_thres=0.45):
# Initialize
device = select_device('0')
model = DetectMultiBackend(weights='yolov9-c.pt', device="0", fp16=False, data='data/coco.yaml')
stride, names, pt = model.stride, model.names, model.pt
# Load image
image = np.array(PIL.Image.open(image_path))
img = letterbox(img0, imgsz, stride=stride, auto=True)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(device).float()
img /= 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
pred = model(img, augment=False, visualize=False)
# Apply NMS
pred = non_max_suppression(pred[0][0], conf_thres, iou_thres, classes=None, max_det=1000)
```
### Citation
```
@article{wang2024yolov9,
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},
booktitle={arXiv preprint arXiv:2402.13616},
year={2024}
}
```
The Colab notebook can be found [here](https://colab.research.google.com/drive/1U3rbOmAZOwPUekcvpQS4GGVJQYR7VaQX?usp=sharing#scrollTo=k-JxtpQ_2e0F). 🧡 |