huseinzol05 commited on
Commit
d3631b5
1 Parent(s): 9a06d2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +229 -196
README.md CHANGED
@@ -3,199 +3,232 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags: []
4
  ---
5
 
6
+ # Multi-images Multi-audio Multi-turn Malaysian 7B Mistral
7
+
8
+ WanDB https://wandb.ai/huseinzol05/multimodal-mistral?workspace=user-huseinzol05
9
+
10
+ ## how-to
11
+
12
+ ```python
13
+ from modeling_combine import MM_LLMs, MM_LLMs_Config
14
+ from transformers import AutoTokenizer, AutoProcessor
15
+ from PIL import Image
16
+ import librosa
17
+ import requests
18
+
19
+ model = MM_LLMs.from_pretrained(
20
+ 'mesolitica/malaysian-mistral-mmmmodal',
21
+ flash_attention = True,
22
+ dtype = torch.bfloat16,
23
+ torch_dtype = torch.bfloat16
24
+ )
25
+ _ = model.cuda()
26
+
27
+ image_processor = AutoProcessor.from_pretrained('google/siglip-base-patch16-384')
28
+ audio_processor = AutoProcessor.from_pretrained('mesolitica/malaysian-whisper-small')
29
+ tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-mistral-mmmmodal')
30
+
31
+ def prepare_dataset(messages, images: List[str] = None, audio: List[str] = None, sr = 16000):
32
+
33
+ if images is not None:
34
+ images = [Image.open(f).convert('RGB') for f in images]
35
+ image_output = image_processor(images=images, return_tensors='pt')['pixel_values']
36
+ else:
37
+ image_output = None
38
+
39
+ if audio is not None:
40
+ audio = [librosa.load(f, sr=sr)[0] for f in audio]
41
+ audio_features = audio_processor(audio, sampling_rate=sr, return_tensors='pt',)['input_features']
42
+ else:
43
+ audio_features = None
44
+
45
+ prompt = tokenizer.apply_chat_template(messages, tokenize = False)
46
+ outputs = tokenizer(
47
+ prompt,
48
+ return_tensors='pt',
49
+ return_overflowing_tokens=False,
50
+ return_length=False
51
+ )
52
+
53
+ outputs['images'] = image_output
54
+ outputs['audios'] = audio_features
55
+
56
+ image_token = tokenizer.convert_tokens_to_ids('<image>')
57
+ audio_token = tokenizer.convert_tokens_to_ids('<audio>')
58
+
59
+ if image_output is not None:
60
+ len_image = len(image_output)
61
+ else:
62
+ len_image = 0
63
+
64
+ if audio_features is not None:
65
+ len_audio = len(audio_features)
66
+ else:
67
+ len_audio = 0
68
+
69
+ outputs['image_index'] = torch.tensor([0] * len_image)
70
+ outputs['image_starts'] = torch.tensor([image_token] * (len_image + 1))
71
+ outputs['audio_index'] = torch.tensor([0] * len_audio)
72
+ outputs['audio_starts'] = torch.tensor([audio_token] * (len_audio + 1))
73
+
74
+ where_is = torch.where((outputs['input_ids'] == image_token) | (outputs['input_ids'] == audio_token))
75
+ ls = []
76
+ for i in range(len(where_is[0])):
77
+ b, k = where_is[0][i], where_is[1][i]
78
+ l = int(outputs['input_ids'][b, k])
79
+ ls.append(l)
80
+
81
+ ls = torch.tensor(ls)
82
+ outputs['where_is_b'] = where_is[0]
83
+ outputs['where_is_k'] = where_is[1]
84
+ outputs['ls'] = ls
85
+
86
+ return outputs
87
+
88
+ with open('Persian-cat-breed.jpg', 'wb') as fopen:
89
+ fopen.write(requests.get('https://cdn.beautifulnara.net/wp-content/uploads/2017/12/10201620/Persian-cat-breed.jpg').content)
90
+
91
+ with open('nasi-goreng-1-23.jpg', 'wb') as fopen:
92
+ fopen.write(requests.get('https://www.jocooks.com/wp-content/uploads/2023/09/nasi-goreng-1-23.jpg').content)
93
+
94
+ with open('test.mp3', 'wb') as fopen:
95
+ fopen.write(requests.get('https://github.com/mesolitica/multimodal-LLM/raw/master/data/test.mp3').content)
96
+
97
+ messages = [
98
+ {'role': 'user', 'content': '<image> </image> ini gambar apa'},
99
+ ]
100
+ outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg'])
101
+ if outputs['images'] is not None:
102
+ outputs['images'] = outputs['images'].type(model.dtype)
103
+ if outputs['audios'] is not None:
104
+ outputs['audios'] = outputs['audios'].type(model.dtype)
105
+ for k in outputs.keys():
106
+ if outputs[k] is not None:
107
+ outputs[k] = outputs[k].cuda()
108
+
109
+ with torch.no_grad():
110
+ model_inputs = model.prepare_inputs_for_generation(**outputs)
111
+ r = model_inputs.pop('input_ids', None)
112
+
113
+ generate_kwargs = dict(
114
+ model_inputs,
115
+ max_new_tokens=300,
116
+ top_p=0.95,
117
+ top_k=50,
118
+ temperature=0.1,
119
+ do_sample=True,
120
+ num_beams=1,
121
+ )
122
+
123
+ r = model.llm.generate(**generate_kwargs)
124
+ print(tokenizer.decode(r[0]))
125
+ ```
126
+
127
+ ```
128
+ <s>Imej itu menunjukkan seekor kucing putih yang comel duduk di atas sofa hitam.</s>
129
+ ```
130
+
131
+ ```python
132
+ messages = [
133
+ {'role': 'user', 'content': '<image> </image> <image> </image> apa kaitan 2 gambar ni'},
134
+ ]
135
+ outputs = prepare_dataset(messages, images = ['Persian-cat-breed.jpg', 'nasi-goreng-1-23.jpg'])
136
+ if outputs['images'] is not None:
137
+ outputs['images'] = outputs['images'].type(model.dtype)
138
+ if outputs['audios'] is not None:
139
+ outputs['audios'] = outputs['audios'].type(model.dtype)
140
+ for k in outputs.keys():
141
+ if outputs[k] is not None:
142
+ outputs[k] = outputs[k].cuda()
143
+
144
+ with torch.no_grad():
145
+ model_inputs = model.prepare_inputs_for_generation(**outputs)
146
+ r = model_inputs.pop('input_ids', None)
147
+
148
+ generate_kwargs = dict(
149
+ model_inputs,
150
+ max_new_tokens=300,
151
+ top_p=0.95,
152
+ top_k=50,
153
+ temperature=0.1,
154
+ do_sample=True,
155
+ num_beams=1,
156
+ )
157
+
158
+ r = model.llm.generate(**generate_kwargs)
159
+ print(tokenizer.decode(r[0]))
160
+ ```
161
+
162
+ ```
163
+ <s>Tiada hubungan yang jelas antara gambar 1 (anak kucing putih duduk di atas sofa) dan gambar 2 (foto penutup mangkuk mi telur dengan nasi dan cili). Gambar pertama ialah imej haiwan, manakala gambar kedua ialah imej makanan. Mereka tergolong dalam kategori yang berbeza dan tidak mempunyai hubungan antara satu sama lain.</s>
164
+ ```
165
+
166
+ ```python
167
+ messages = [
168
+ {'role': 'user', 'content': '<audio> </audio> apa isu audio ni'},
169
+ ]
170
+ outputs = prepare_dataset(messages, audio = [audio])
171
+ if outputs['images'] is not None:
172
+ outputs['images'] = outputs['images'].type(model.dtype)
173
+ if outputs['audios'] is not None:
174
+ outputs['audios'] = outputs['audios'].type(model.dtype)
175
+ for k in outputs.keys():
176
+ if outputs[k] is not None:
177
+ outputs[k] = outputs[k].cuda()
178
+
179
+ with torch.no_grad():
180
+ model_inputs = model.prepare_inputs_for_generation(**outputs, inference = True)
181
+
182
+ r = model_inputs.pop('input_ids', None)
183
+ generate_kwargs = dict(
184
+ model_inputs,
185
+ max_new_tokens=300,
186
+ top_p=0.95,
187
+ top_k=50,
188
+ temperature=0.9,
189
+ do_sample=True,
190
+ num_beams=1,
191
+ )
192
+
193
+ r = model.llm.generate(**generate_kwargs)
194
+ print(tokenizer.decode(r[0]))
195
+ ```
196
+
197
+ ```
198
+ <s>Isu audio ini berkisar tentang persepsi salah faham dan sikap bakhil berkenaan wang dalam konteks menggalakkan penggunaan e-dompet. Penceramah mencadangkan bahawa orang mungkin keberatan untuk menerima wang kerana tidak melihat manfaat atau nilai menggunakan e-dompet, dan kebimbangan tentang tidak dapat mengakses wang itu jika mereka memerlukannya segera. Penceramah juga menyebut isu ekonomi sistem dan kekurangan sistem yang berkesan di Malaysia. Secara keseluruhannya, isu ini menekankan keperluan untuk pemahaman dan kesedaran yang lebih baik tentang faedah menggunakan e-dompet, serta keperluan untuk pembaharuan sistemik untuk memastikan akses yang saksama kepada wang dan sumber lain.</s>
199
+ ```
200
+
201
+ ```python
202
+ messages = [
203
+ {'role': 'user', 'content': '<image> </image> <audio> </audio> apa kaitan gambar dan audio ni'},
204
+ ]
205
+ outputs = prepare_dataset(messages, images = [test_image], audio = [audio])
206
+ if outputs['images'] is not None:
207
+ outputs['images'] = outputs['images'].type(model.dtype)
208
+ if outputs['audios'] is not None:
209
+ outputs['audios'] = outputs['audios'].type(model.dtype)
210
+ for k in outputs.keys():
211
+ if outputs[k] is not None:
212
+ outputs[k] = outputs[k].cuda()
213
+
214
+ with torch.no_grad():
215
+ model_inputs = model.prepare_inputs_for_generation(**outputs, inference = True)
216
+
217
+ r = model_inputs.pop('input_ids', None)
218
+ generate_kwargs = dict(
219
+ model_inputs,
220
+ max_new_tokens=300,
221
+ top_p=0.95,
222
+ top_k=50,
223
+ temperature=0.9,
224
+ do_sample=True,
225
+ num_beams=1,
226
+ )
227
+
228
+ r = model.llm.generate(**generate_kwargs)
229
+ print(tokenizer.decode(r[0]))
230
+ ```
231
+
232
+ ```
233
+ <s>Tidak jelas bagaimana gambar dan audio berkaitan antara satu sama lain. Gambar itu menunjukkan bas pelancongan dengan iklan yang menggalakkan orang ramai menggunakan e-dompet mereka, tetapi ia tidak menyatakan tujuan iklan itu. Audio itu membincangkan idea pembaziran dana sebanyak RM5 juta (kira-kira 1.2 juta USD) ke atas sesuatu projek, tetapi ia tidak menyebut secara langsung bas pelancongan atau e-dompet. Ada kemungkinan bahawa kedua-dua gambar dan audio sedang membincangkan topik yang sama, tetapi lebih banyak konteks diperlukan untuk membuat perkaitan yang pasti.</s>
234
+ ```