|
from collections import Counter, defaultdict |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
import copy |
|
import math |
|
from transformers.activations import gelu |
|
from typing import List, Optional, Tuple, Union |
|
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig |
|
from transformers import CONFIG_MAPPING |
|
from transformers.modeling_outputs import BaseModelOutput |
|
from transformers import GenerationConfig |
|
from transformers import CLIPConfig, CLIPProcessor, CLIPModel, AutoModel |
|
from transformers import WhisperConfig, WhisperPreTrainedModel, WhisperModel |
|
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig |
|
|
|
|
|
def most_frequent_element(tensor): |
|
flattened_list = tensor.flatten().tolist() |
|
counter = Counter(flattened_list) |
|
most_common_element = counter.most_common(1)[0][1] |
|
|
|
return most_common_element |
|
|
|
|
|
class MM_LLMs_Config(PretrainedConfig): |
|
model_type = 'mm_llms' |
|
is_composition = True |
|
|
|
def __init__( |
|
self, |
|
image_config=None, |
|
llm_config=None, |
|
vision_select_layer=None, |
|
**kwargs |
|
): |
|
|
|
self.image_config = image_config |
|
self.llm_config = llm_config |
|
self.vision_select_layer = vision_select_layer |
|
|
|
if isinstance(self.image_config, dict): |
|
image_config["model_type"] = ( |
|
image_config["model_type"] if "model_type" in image_config else "clip" |
|
) |
|
self.image_config = CONFIG_MAPPING[image_config["model_type"]](**image_config) |
|
|
|
if isinstance(self.llm_config, dict): |
|
llm_config["model_type"] = llm_config["model_type"] if "model_type" in llm_config else "llama" |
|
self.llm_config = CONFIG_MAPPING[llm_config["model_type"]](**llm_config) |
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
class LlavaMultiModalProjector(nn.Module): |
|
def __init__(self, in_hidden_size, out_hidden_size, conv_kernel=None, conv_stride=3): |
|
super().__init__() |
|
|
|
self.conv_kernel = conv_kernel |
|
|
|
if conv_kernel: |
|
self.linear_1 = nn.Conv1d( |
|
in_hidden_size, |
|
out_hidden_size, |
|
kernel_size=conv_kernel, |
|
stride=conv_stride) |
|
else: |
|
self.linear_1 = nn.Linear( |
|
in_hidden_size, |
|
out_hidden_size, |
|
bias=True, |
|
) |
|
self.act = gelu |
|
self.linear_2 = nn.Linear( |
|
out_hidden_size, |
|
out_hidden_size, |
|
bias=True |
|
) |
|
|
|
def forward(self, image_features): |
|
hidden_states = self.linear_1(image_features) |
|
if self.conv_kernel: |
|
hidden_states = hidden_states.transpose(1, 2).contiguous() |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class MM_LLMs(PreTrainedModel): |
|
config_class = MM_LLMs_Config |
|
supports_gradient_checkpointing = True |
|
_supports_flash_attn_2 = True |
|
|
|
def __init__(self, config, flash_attention=False, dtype=torch.float32): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.image_encoder = AutoModel.from_config(config.image_config) |
|
|
|
self.llm = AutoModelForCausalLM.from_config( |
|
config.llm_config, |
|
use_flash_attention_2=flash_attention, |
|
torch_dtype=dtype, |
|
) |
|
|
|
self.image_projector = LlavaMultiModalProjector( |
|
config.image_config.vision_config.hidden_size, |
|
config.llm_config.hidden_size |
|
) |
|
|
|
def forward(self, |
|
input_ids: torch.LongTensor = None, |
|
image_index: torch.LongTensor = None, |
|
audio_index: torch.LongTensor = None, |
|
image_starts: torch.int = None, |
|
image_ends: torch.int = None, |
|
audio_starts: torch.int = None, |
|
audio_ends: torch.int = None, |
|
images: torch.FloatTensor = None, |
|
audios: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, **kwargs): |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
images = images.type(self.image_encoder.dtype) if images is not None else None |
|
audios = audios.type(self.audio_encoder.dtype) if audios is not None else None |
|
|
|
model_inputs = self.prepare_inputs_for_generation( |
|
input_ids=input_ids, |
|
image_index=image_index, |
|
audio_index=audio_index, |
|
image_starts=image_starts, |
|
image_ends=image_ends, |
|
audio_starts=audio_starts, |
|
audio_ends=audio_ends, |
|
images=images, |
|
audios=audios, |
|
attention_mask=attention_mask, |
|
labels=labels) |
|
|
|
outputs = self.llm( |
|
inputs_embeds=model_inputs['inputs_embeds'], |
|
attention_mask=model_inputs['attention_mask'], |
|
labels=model_inputs['labels'], |
|
return_dict=return_dict) |
|
|
|
return outputs |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
images=None, |
|
audios=None, |
|
audio_starts=None, |
|
audio_ends=None, |
|
image_starts=None, |
|
image_ends=None, |
|
attention_mask=None, |
|
labels=None, |
|
audio_index=None, |
|
image_index=None, |
|
**kwargs): |
|
|
|
image_features = self.encode_image( |
|
images) if images is not None else None |
|
embed_tokens = self.llm.model.embed_tokens |
|
text_embeddings = embed_tokens(input_ids) |
|
batch_size = text_embeddings.shape[0] |
|
seq_len = text_embeddings.shape[1] |
|
embed_dim = text_embeddings.shape[2] |
|
|
|
max_count_image = most_frequent_element(image_index) |
|
seq_image = image_features.shape[1] |
|
|
|
new_len = text_embeddings.shape[1] + seq_image * max_count_image |
|
final_embedding = torch.zeros( |
|
batch_size, new_len, embed_dim, |
|
device=text_embeddings.device, |
|
dtype=text_embeddings.dtype |
|
) |
|
final_embedding[:, :seq_len] = text_embeddings |
|
final_attention_mask = torch.zeros( |
|
batch_size, new_len, |
|
device=attention_mask.device, |
|
dtype=attention_mask.dtype |
|
) |
|
final_attention_mask[:, :seq_len] = attention_mask |
|
if labels is not None: |
|
final_labels = torch.full( |
|
(batch_size, new_len), |
|
-100, |
|
device=labels.device, |
|
dtype=labels.dtype |
|
) |
|
final_labels[:, :seq_len] = labels |
|
else: |
|
final_labels = None |
|
|
|
image_id = int(image_starts[0]) |
|
|
|
where_is = torch.where(input_ids == image_id) |
|
positions = defaultdict(int) |
|
b_image = 0 |
|
|
|
for i in range(len(where_is[0])): |
|
b, k = where_is[0][i], where_is[1][i] |
|
int_b = int(b) |
|
int_k = int(k) |
|
l = int(input_ids[b, k]) |
|
f = image_features[b_image] |
|
b_image += 1 |
|
|
|
c = torch.cat([final_embedding[b, :int_k + 1 + positions[int_b]], |
|
f, text_embeddings[b, k + 1:]]) |
|
final_embedding[b, :len(c)] = c |
|
final_attention_mask[b, :len(c)] = 1.0 |
|
|
|
if labels is not None: |
|
ignore = torch.tensor([-100] * len(f), device=labels.device) |
|
c_label = torch.cat( |
|
[final_labels[b, :int_k + 1 + positions[int_b]], ignore, labels[b, k + 1:]]) |
|
final_labels[b, :len(c)] = c_label |
|
|
|
positions[int_b] += len(f) |
|
|
|
model_inputs = { |
|
"input_ids": input_ids, |
|
"inputs_embeds": final_embedding, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": final_attention_mask, |
|
"labels": final_labels, |
|
} |
|
return model_inputs |
|
|
|
def encode_image(self, images): |
|
if self.config.vision_select_layer is not None: |
|
encoded = self.image_encoder.vision_model(images, output_hidden_states=True) |
|
encoded = encoded.hidden_states[self.config.vision_select_layer] |
|
else: |
|
encoded = self.image_encoder.vision_model(images)[0] |
|
image_features = self.image_projector(encoded) |
|
return image_features |
|
|