metanovus commited on
Commit
f50646d
·
verified ·
1 Parent(s): 8cb804a

Update README.md

Browse files

docs: adding the example of using with BERT class

Files changed (1) hide show
  1. README.md +48 -15
README.md CHANGED
@@ -1,17 +1,17 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - ru
5
- metrics:
6
- - accuracy
7
- base_model:
8
- - ai-forever/ruRoberta-large
9
- pipeline_tag: text-classification
10
- tags:
11
- - reviews
12
- - e-commercy
13
- - foodtech
14
- ---
15
  # Food Delivery Feedback Multi-Label Classification Model
16
 
17
  This model was developed for multi-label classification of customer feedback in the food delivery domain. It can identify up to 50 different aspects/issues from user reviews and feedback messages.
@@ -85,4 +85,37 @@ The model was trained as part of an NLP competition focused on improving custome
85
 
86
  - Primarily optimized for Russian language feedback
87
  - May require fine-tuning for specific regional contexts
88
- - Best suited for food delivery domain specifically
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - ru
5
+ metrics:
6
+ - accuracy
7
+ base_model:
8
+ - ai-forever/ruRoberta-large
9
+ pipeline_tag: text-classification
10
+ tags:
11
+ - reviews
12
+ - e-commercy
13
+ - foodtech
14
+ ---
15
  # Food Delivery Feedback Multi-Label Classification Model
16
 
17
  This model was developed for multi-label classification of customer feedback in the food delivery domain. It can identify up to 50 different aspects/issues from user reviews and feedback messages.
 
85
 
86
  - Primarily optimized for Russian language feedback
87
  - May require fine-tuning for specific regional contexts
88
+ - Best suited for food delivery domain specifically
89
+
90
+ ## How to use with PyTorch and Transfomers
91
+
92
+ ```python
93
+ import torch
94
+ from transformers import RobertaTokenizer, RobertaForSequenceClassification
95
+
96
+
97
+ model_name = 'metanovus/ruroberta-ecom-tech-best'
98
+ device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
99
+
100
+ tokenizer = RobertaTokenizer.from_pretrained(model_name)
101
+
102
+ class BERTClass(torch.nn.Module):
103
+ def __init__(self):
104
+ super(BERTClass, self).__init__()
105
+ self.bert_model = RobertaForSequenceClassification.from_pretrained(
106
+ model_name,
107
+ return_dict=True,
108
+ problem_type='multi_label_classification',
109
+ num_labels=50
110
+ )
111
+
112
+ def forward(self, input_ids, attn_mask, token_type_ids):
113
+ output = self.bert_model(
114
+ input_ids,
115
+ attention_mask=attn_mask,
116
+ token_type_ids=token_type_ids
117
+ )
118
+ return output.logits
119
+
120
+ model = BERTClass().to(device)
121
+ ```