File size: 3,683 Bytes
4cfde11
8186ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cfde11
8186ddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
license: llama2
library_name: peft
tags:
- typescript
- instruction-tuning
- code-generation
- lora
- peft
base_model: codellama/CodeLlama-13b-hf
model-index:
- name: lora-out
  results: []
datasets:
- mhhmm/typescript-instruct-20k
language:
- en
metrics:
- code_eval
pipeline_tag: text-generation
---

## Architecture

![The Architecture](https://github.com/LeVuMinhHuy/brocode/blob/master/.pics/about-the-model.png?raw=true)

## About

This model is a fine-tuned version of [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf).
It achieves the following results on the evaluation set:
- Loss: 0.4268

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7555        | 0.01  | 1    | 0.7062          |
| 0.7036        | 0.05  | 7    | 0.6673          |
| 0.5422        | 0.1   | 14   | 0.5152          |
| 0.5351        | 0.15  | 21   | 0.4866          |
| 0.495         | 0.2   | 28   | 0.4688          |
| 0.5651        | 0.25  | 35   | 0.4587          |
| 0.5146        | 0.3   | 42   | 0.4486          |
| 0.4955        | 0.35  | 49   | 0.4469          |
| 0.5117        | 0.4   | 56   | 0.4432          |
| 0.5245        | 0.45  | 63   | 0.4410          |
| 0.5003        | 0.5   | 70   | 0.4371          |
| 0.4502        | 0.55  | 77   | 0.4340          |
| 0.527         | 0.6   | 84   | 0.4315          |
| 0.48          | 0.65  | 91   | 0.4305          |
| 0.448         | 0.7   | 98   | 0.4289          |
| 0.5427        | 0.75  | 105  | 0.4289          |
| 0.4715        | 0.8   | 112  | 0.4279          |
| 0.5584        | 0.85  | 119  | 0.4276          |
| 0.4936        | 0.9   | 126  | 0.4267          |
| 0.4788        | 0.95  | 133  | 0.4268          |
| 0.476         | 1.0   | 140  | 0.4268          |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- PEFT 0.6.0
  
### Evaluation

I'm using MultiPL-E benchmark, the same as Code Llmama using in their paper


| Modal                                   | Pass@k | Estimate | Num problems  |
|-----------------------------------------|--------|----------|---------------|
| Code LLama - Instruct 13B               | 1      | 39.0%    | 159           |
| Our  13B                                | 1      | 42.4%    | 159           |

How to reproduce my evaluation? Just run like the offical document of MultiPL-E: https://nuprl.github.io/MultiPL-E/tutorial.html, change the modal name by my model here: `mhhmm/typescript-instruct-20k-v2` 

This is the code that I ran with Google Colab (using A100 40GB, yes, it requires that much GPU RAM)

If you even have a stronger GPU, increase the --batch-size, or --completion-limit

```
!pip install --upgrade pip
!pip install aiohttp numpy tqdm pytest datasets torch transformers sentencepiece
!git clone https://github.com/nuprl/MultiPL-E
%cd MultiPL-E
!mkdir typescript
!python3 automodel.py --name mhhmm/typescript-instruct-20k-v2 --root-dataset humaneval --lang ts --temperature 0.2 --batch-size 10 --completion-limit 20 --output-dir-prefix typescript
%cd evaluation/src
!python3 main.py --dir ../../typescript --output-dir ../../typescript --recursive
!python3 pass_k.py ./typescript/*
```