--- license: cc base_model: joelniklaus/legal-swiss-roberta-large tags: - generated_from_trainer datasets: - swiss_judgment_prediction metrics: - accuracy model-index: - name: fine_tuned_model_balanced_512_tokens_it results: - task: name: Text Classification type: text-classification dataset: name: swiss_judgment_prediction type: swiss_judgment_prediction config: it split: test args: it metrics: - name: Accuracy type: accuracy value: 0.7770935960591133 --- # fine_tuned_model_balanced_512_tokens_it This model is a fine-tuned version of [joelniklaus/legal-swiss-roberta-large](https://huggingface.co/joelniklaus/legal-swiss-roberta-large) on the swiss_judgment_prediction dataset. It achieves the following results on the evaluation set: - Loss: 0.7007 - Accuracy: 0.7771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 96 | 0.6889 | 0.6736 | | No log | 2.0 | 192 | 0.7007 | 0.7771 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.1