--- library_name: transformers license: mit base_model: mhr2004/roberta-base-nsp-1000000-1e-06-32 tags: - generated_from_trainer model-index: - name: roberta-base-nsp-1000000-1e-06-32-negcommonsensebalanced-1e-06-64 results: [] --- # roberta-base-nsp-1000000-1e-06-32-negcommonsensebalanced-1e-06-64 This model is a fine-tuned version of [mhr2004/roberta-base-nsp-1000000-1e-06-32](https://huggingface.co/mhr2004/roberta-base-nsp-1000000-1e-06-32) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 256 - eval_batch_size: 1024 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.5812 | 1.0 | 795 | 0.5384 | | 0.5273 | 2.0 | 1590 | 0.5009 | | 0.5051 | 3.0 | 2385 | 0.4822 | | 0.4865 | 4.0 | 3180 | 0.4731 | | 0.4723 | 5.0 | 3975 | 0.4582 | | 0.4616 | 6.0 | 4770 | 0.4602 | | 0.4526 | 7.0 | 5565 | 0.4426 | | 0.44 | 8.0 | 6360 | 0.4402 | | 0.4329 | 9.0 | 7155 | 0.4316 | | 0.4288 | 10.0 | 7950 | 0.4282 | | 0.4174 | 11.0 | 8745 | 0.4234 | | 0.4134 | 12.0 | 9540 | 0.4205 | | 0.4101 | 13.0 | 10335 | 0.4203 | | 0.4076 | 14.0 | 11130 | 0.4152 | | 0.4028 | 15.0 | 11925 | 0.4094 | | 0.3963 | 16.0 | 12720 | 0.4103 | | 0.393 | 17.0 | 13515 | 0.4088 | | 0.3899 | 18.0 | 14310 | 0.4120 | | 0.3897 | 19.0 | 15105 | 0.4050 | | 0.3842 | 20.0 | 15900 | 0.4051 | | 0.3839 | 21.0 | 16695 | 0.4050 | | 0.3791 | 22.0 | 17490 | 0.4015 | | 0.3801 | 23.0 | 18285 | 0.4035 | | 0.3807 | 24.0 | 19080 | 0.4016 | | 0.3738 | 25.0 | 19875 | 0.4028 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0