File size: 2,041 Bytes
fb398df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c294c0f
 
 
 
 
 
 
fb398df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f588982
fb398df
 
 
 
c294c0f
 
 
 
 
 
fb398df
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: fine_tuned_t5_small_model_sec_5_v13
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_t5_small_model_sec_5_v13

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9971
- Rouge1: 0.4057
- Rouge2: 0.155
- Rougel: 0.2516
- Rougelsum: 0.252
- Gen Len: 95.1
- Bert F1: 0.8758

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bert F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:-------:|
| 3.5508        | 1.0   | 95   | 3.1502          | 0.4016 | 0.1522 | 0.2479 | 0.2476    | 97.6526 | 0.874   |
| 3.1904        | 2.0   | 190  | 3.0374          | 0.4094 | 0.1578 | 0.2536 | 0.2536    | 97.6474 | 0.8757  |
| 3.138         | 3.0   | 285  | 3.0059          | 0.4034 | 0.1538 | 0.2486 | 0.2491    | 95.0211 | 0.8752  |
| 3.1061        | 4.0   | 380  | 2.9971          | 0.4057 | 0.155  | 0.2516 | 0.252     | 95.1    | 0.8758  |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3