michaelfeil
commited on
Commit
·
3dffcc8
1
Parent(s):
5052a2f
Upload Salesforce/codegen2-1B ctranslate fp16 weights
Browse files- README.md +128 -0
- config.json +27 -0
- generation_config.json +6 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- fauxpilot
|
5 |
+
- gpt-j
|
6 |
+
- float16
|
7 |
+
|
8 |
+
license: apache-2.0
|
9 |
+
---
|
10 |
+
# Conversion for FauxPilot, Codegen-2 as GPT-J
|
11 |
+
|
12 |
+
```
|
13 |
+
Converted on 2023-05-22 using
|
14 |
+
```
|
15 |
+
python /home/michael/fauxpilot/converter/codegen_gptj_convert.py --code_model Salesforce/codegen2-1B /home/michael/tmp-codegen2-1B-gptj
|
16 |
+
```
|
17 |
+
|
18 |
+
# Licence and other remarks:
|
19 |
+
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
|
20 |
+
|
21 |
+
# Original description
|
22 |
+
|
23 |
+
|
24 |
+
# CodeGen2 (CodeGen2-16B)
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
[CodeGen2](https://github.com/salesforce/CodeGen2) is a family of autoregressive language models for **program synthesis**, introduced in the paper:
|
29 |
+
|
30 |
+
[CodeGen2: Lessons for Training LLMs on Programming and Natural Languages](https://arxiv.org/abs/2305.02309) by Erik Nijkamp\*, Hiroaki Hayashi\*, Caiming Xiong, Silvio Savarese, Yingbo Zhou.
|
31 |
+
|
32 |
+
Unlike the original CodeGen model family (i.e., CodeGen1), CodeGen2 is capable of infilling, and supports more programming languages.
|
33 |
+
|
34 |
+
Four model sizes are released: `1B`, `3.7B`, `7B`, `16B`.
|
35 |
+
|
36 |
+
## How to use
|
37 |
+
|
38 |
+
This model can be easily loaded using the `AutoModelForCausalLM` functionality.
|
39 |
+
|
40 |
+
### Causal sampling
|
41 |
+
|
42 |
+
For regular causal sampling, simply generate completions given the context:
|
43 |
+
```python
|
44 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-16B")
|
46 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-16B", trust_remote_code=True, revision="main")
|
47 |
+
|
48 |
+
text = "def hello_world():"
|
49 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
50 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
51 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
52 |
+
```
|
53 |
+
|
54 |
+
### Infill sampling
|
55 |
+
|
56 |
+
For **infill** sampling, we introduce three new special token types:
|
57 |
+
|
58 |
+
* `<mask_N>`: N-th span to be masked. In practice, use `<mask_1>` to where you want to sample infill.
|
59 |
+
* `<sep>`: Seperator token between the suffix and the infilled sample. See below.
|
60 |
+
* `<eom>`: "End-Of-Mask" token that model will output at the end of infilling. You may use this token to truncate the output.
|
61 |
+
|
62 |
+
For example, if we want to generate infill for the following cursor position of a function:
|
63 |
+
```python
|
64 |
+
def hello_world():
|
65 |
+
|
|
66 |
+
return name
|
67 |
+
```
|
68 |
+
we construct an input to the model by
|
69 |
+
|
70 |
+
1. Inserting `<mask_1>` token in place of cursor position
|
71 |
+
2. Append `<sep>` token to indicate the boundary
|
72 |
+
3. Insert another `<mask_1>` to indicate which mask we want to infill.
|
73 |
+
|
74 |
+
The final snippet looks as follows:
|
75 |
+
|
76 |
+
```python
|
77 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-16B")
|
79 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-16B", trust_remote_code=True, revision="main")
|
80 |
+
|
81 |
+
|
82 |
+
def format(prefix, suffix):
|
83 |
+
return prefix + "<mask_1>" + suffix + "<|endoftext|>" + "<sep>" + "<mask_1>"
|
84 |
+
|
85 |
+
|
86 |
+
prefix = "def hello_world():
|
87 |
+
"
|
88 |
+
suffix = " return name"
|
89 |
+
text = format(prefix, suffix)
|
90 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
91 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
92 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=False)[len(text):])
|
93 |
+
```
|
94 |
+
|
95 |
+
You might want to truncate the model output with `<eom>`.
|
96 |
+
|
97 |
+
## Training data
|
98 |
+
|
99 |
+
This checkpoint is trained on the stricter permissive subset of [the deduplicated version of the Stack dataset (v1.1)](https://huggingface.co/datasets/bigcode/the-stack-dedup). Supported languages (and frameworks) are as follows:
|
100 |
+
`c`, `c++`, `c-sharp`, `dart`, `go`, `java`, `javascript`, `kotlin`, `lua`, `php`, `python`, `ruby`, `rust`, `scala`, `shell`, `sql`, `swift`, `typescript`, `vue`.
|
101 |
+
|
102 |
+
## Training procedure
|
103 |
+
|
104 |
+
CodeGen2 was trained using cross-entropy loss to maximize the likelihood of sequential inputs.
|
105 |
+
The input sequences are formatted in two ways: (1) causal language modeling and (2) file-level span corruption.
|
106 |
+
Please refer to the paper for more details.
|
107 |
+
|
108 |
+
## Evaluation results
|
109 |
+
|
110 |
+
We evaluate our models on HumanEval and HumanEval-Infill. Please refer to the [paper](https://arxiv.org/abs/2305.02309) for more details.
|
111 |
+
|
112 |
+
## Intended use and limitations
|
113 |
+
|
114 |
+
As an autoregressive language model, CodeGen2 is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them.
|
115 |
+
However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well.
|
116 |
+
|
117 |
+
|
118 |
+
## BibTeX entry and citation info
|
119 |
+
|
120 |
+
```bibtex
|
121 |
+
@article{Nijkamp2023codegen2,
|
122 |
+
title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages},
|
123 |
+
author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo},
|
124 |
+
journal={arXiv preprint},
|
125 |
+
year={2023}
|
126 |
+
}
|
127 |
+
```
|
128 |
+
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_new",
|
3 |
+
"architectures": [
|
4 |
+
"GPTJForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"embd_pdrop": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"layer_norm_epsilon": 1e-05,
|
12 |
+
"model_type": "gptj",
|
13 |
+
"n_embd": 2048,
|
14 |
+
"n_head": 16,
|
15 |
+
"n_inner": null,
|
16 |
+
"n_layer": 16,
|
17 |
+
"n_positions": 2048,
|
18 |
+
"resid_pdrop": 0.0,
|
19 |
+
"rotary_dim": 64,
|
20 |
+
"scale_attn_weights": true,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"tokenizer_class": "CodeGenTokenizer",
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.28.1",
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 51200
|
27 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.28.1"
|
6 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb8befdeaa929fa9c00a6946deed6788b4b939c6c07e1067c8a0a910ddd355f0
|
3 |
+
size 2097783137
|