michaelfeil
commited on
Commit
·
5b9fc54
1
Parent(s):
9bc80b0
Upload EleutherAI/gpt-j-6b ctranslate fp16 weights
Browse files- .gitattributes +8 -25
- README.md +213 -0
- added_tokens.json +1 -0
- merges.txt +0 -0
- model.bin +2 -2
- special_tokens_map.json +1 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -1,34 +1,17 @@
|
|
1 |
-
*.
|
2 |
-
*.
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
4 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
11 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- ctranslate2
|
6 |
+
- int8
|
7 |
+
- float16
|
8 |
+
- pytorch
|
9 |
+
- causal-lm
|
10 |
+
license: apache-2.0
|
11 |
+
datasets:
|
12 |
+
- the_pile
|
13 |
+
|
14 |
+
---
|
15 |
+
# # Fast-Inference with Ctranslate2
|
16 |
+
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
|
17 |
+
|
18 |
+
quantized version of [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b)
|
19 |
+
```bash
|
20 |
+
pip install hf-hub-ctranslate2>=2.0.6
|
21 |
+
```
|
22 |
+
Converted on 2023-05-19 using
|
23 |
+
```
|
24 |
+
ct2-transformers-converter --model EleutherAI/gpt-j-6b --output_dir /home/feil_m/tmp-ct2fast-gpt-j-6b --force --copy_files merges.txt tokenizer.json README.md tokenizer_config.json vocab.json special_tokens_map.json added_tokens.json .gitattributes --quantization float16
|
25 |
+
```
|
26 |
+
|
27 |
+
Checkpoint compatible to [ctranslate2>=3.13.0](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.0.6](https://github.com/michaelfeil/hf-hub-ctranslate2)
|
28 |
+
- `compute_type=int8_float16` for `device="cuda"`
|
29 |
+
- `compute_type=int8` for `device="cpu"`
|
30 |
+
|
31 |
+
```python
|
32 |
+
from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
|
33 |
+
from transformers import AutoTokenizer
|
34 |
+
|
35 |
+
model_name = "michaelfeil/ct2fast-gpt-j-6b"
|
36 |
+
# use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model.
|
37 |
+
model = GeneratorCT2fromHfHub(
|
38 |
+
# load in int8 on CUDA
|
39 |
+
model_name_or_path=model_name,
|
40 |
+
device="cuda",
|
41 |
+
compute_type="int8_float16",
|
42 |
+
tokenizer=AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6b")
|
43 |
+
)
|
44 |
+
outputs = model.generate(
|
45 |
+
text=["How do you call a fast Flan-ingo?", "User: How are you doing? Bot:"],
|
46 |
+
)
|
47 |
+
print(outputs)
|
48 |
+
```
|
49 |
+
|
50 |
+
# Licence and other remarks:
|
51 |
+
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
|
52 |
+
|
53 |
+
# Original description
|
54 |
+
|
55 |
+
|
56 |
+
# GPT-J 6B
|
57 |
+
|
58 |
+
## Model Description
|
59 |
+
|
60 |
+
GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
|
61 |
+
|
62 |
+
<figure>
|
63 |
+
|
64 |
+
| Hyperparameter | Value |
|
65 |
+
|----------------------|------------|
|
66 |
+
| \\(n_{parameters}\\) | 6053381344 |
|
67 |
+
| \\(n_{layers}\\) | 28* |
|
68 |
+
| \\(d_{model}\\) | 4096 |
|
69 |
+
| \\(d_{ff}\\) | 16384 |
|
70 |
+
| \\(n_{heads}\\) | 16 |
|
71 |
+
| \\(d_{head}\\) | 256 |
|
72 |
+
| \\(n_{ctx}\\) | 2048 |
|
73 |
+
| \\(n_{vocab}\\) | 50257/50400† (same tokenizer as GPT-2/3) |
|
74 |
+
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
|
75 |
+
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
|
76 |
+
<figcaption><p><strong>*</strong> Each layer consists of one feedforward block and one self attention block.</p>
|
77 |
+
<p><strong>†</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
|
78 |
+
|
79 |
+
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
|
80 |
+
dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
|
81 |
+
dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as
|
82 |
+
GPT-2/GPT-3.
|
83 |
+
|
84 |
+
## Intended Use and Limitations
|
85 |
+
|
86 |
+
GPT-J learns an inner representation of the English language that can be used to
|
87 |
+
extract features useful for downstream tasks. The model is best at what it was
|
88 |
+
pretrained for however, which is generating text from a prompt.
|
89 |
+
|
90 |
+
### Out-of-scope use
|
91 |
+
|
92 |
+
GPT-J-6B is **not** intended for deployment without fine-tuning, supervision,
|
93 |
+
and/or moderation. It is not a in itself a product and cannot be used for
|
94 |
+
human-facing interactions. For example, the model may generate harmful or
|
95 |
+
offensive text. Please evaluate the risks associated with your particular use case.
|
96 |
+
|
97 |
+
GPT-J-6B was trained on an English-language only dataset, and is thus **not**
|
98 |
+
suitable for translation or generating text in other languages.
|
99 |
+
|
100 |
+
GPT-J-6B has not been fine-tuned for downstream contexts in which
|
101 |
+
language models are commonly deployed, such as writing genre prose,
|
102 |
+
or commercial chatbots. This means GPT-J-6B will **not**
|
103 |
+
respond to a given prompt the way a product like ChatGPT does. This is because,
|
104 |
+
unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement
|
105 |
+
Learning from Human Feedback (RLHF) to better “follow” human instructions.
|
106 |
+
|
107 |
+
### Limitations and Biases
|
108 |
+
|
109 |
+
The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output.
|
110 |
+
|
111 |
+
GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile.
|
112 |
+
|
113 |
+
As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
|
114 |
+
|
115 |
+
### How to use
|
116 |
+
|
117 |
+
This model can be easily loaded using the `AutoModelForCausalLM` functionality:
|
118 |
+
|
119 |
+
```python
|
120 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
121 |
+
|
122 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
|
123 |
+
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
124 |
+
```
|
125 |
+
|
126 |
+
## Training data
|
127 |
+
|
128 |
+
GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai).
|
129 |
+
|
130 |
+
## Training procedure
|
131 |
+
|
132 |
+
This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly.
|
133 |
+
|
134 |
+
## Evaluation results
|
135 |
+
|
136 |
+
<figure>
|
137 |
+
|
138 |
+
| Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) |
|
139 |
+
|--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------|
|
140 |
+
| Random Chance | ✓ | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 |
|
141 |
+
| GPT-3 Ada‡ | ✗ | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- |
|
142 |
+
| GPT-2 1.5B | ✓ | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 |
|
143 |
+
| GPT-Neo 1.3B‡ | ✓ | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 |
|
144 |
+
| Megatron-2.5B* | ✗ | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 |
|
145 |
+
| GPT-Neo 2.7B‡ | ✓ | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 |
|
146 |
+
| GPT-3 1.3B*‡ | ✗ | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 |
|
147 |
+
| GPT-3 Babbage‡ | ✗ | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- |
|
148 |
+
| Megatron-8.3B* | ✗ | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 |
|
149 |
+
| GPT-3 2.7B*‡ | ✗ | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 |
|
150 |
+
| Megatron-11B† | ✓ | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 |
|
151 |
+
| **GPT-J 6B‡** | **✓** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** |
|
152 |
+
| GPT-3 6.7B*‡ | ✗ | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 |
|
153 |
+
| GPT-3 Curie‡ | ✗ | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- |
|
154 |
+
| GPT-3 13B*‡ | ✗ | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 |
|
155 |
+
| GPT-3 175B*‡ | ✗ | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 |
|
156 |
+
| GPT-3 Davinci‡ | ✗ | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- |
|
157 |
+
<figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p>
|
158 |
+
|
159 |
+
<p><strong>*</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by
|
160 |
+
running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released
|
161 |
+
weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these
|
162 |
+
might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more
|
163 |
+
details.</p>
|
164 |
+
|
165 |
+
<p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not
|
166 |
+
reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a>
|
167 |
+
<a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>)
|
168 |
+
Thus, evaluation was not attempted.</p>
|
169 |
+
|
170 |
+
<p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models
|
171 |
+
failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is
|
172 |
+
trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure>
|
173 |
+
|
174 |
+
## Citation and Related Information
|
175 |
+
|
176 |
+
### BibTeX entry
|
177 |
+
|
178 |
+
To cite this model:
|
179 |
+
```bibtex
|
180 |
+
@misc{gpt-j,
|
181 |
+
author = {Wang, Ben and Komatsuzaki, Aran},
|
182 |
+
title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}},
|
183 |
+
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
|
184 |
+
year = 2021,
|
185 |
+
month = May
|
186 |
+
}
|
187 |
+
```
|
188 |
+
|
189 |
+
To cite the codebase that trained this model:
|
190 |
+
```bibtex
|
191 |
+
@misc{mesh-transformer-jax,
|
192 |
+
author = {Wang, Ben},
|
193 |
+
title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
|
194 |
+
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
|
195 |
+
year = 2021,
|
196 |
+
month = May
|
197 |
+
}
|
198 |
+
```
|
199 |
+
|
200 |
+
If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email.
|
201 |
+
|
202 |
+
## Acknowledgements
|
203 |
+
|
204 |
+
This project would not have been possible without compute generously provided by Google through the
|
205 |
+
[TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
|
206 |
+
|
207 |
+
Thanks to everyone who have helped out one way or another (listed alphabetically):
|
208 |
+
- [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues.
|
209 |
+
- [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package.
|
210 |
+
- [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table.
|
211 |
+
- [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo.
|
212 |
+
- [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts.
|
213 |
+
- [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<|extratoken_14|>": 50270, "<|extratoken_121|>": 50377, "<|extratoken_3|>": 50259, "<|extratoken_25|>": 50281, "<|extratoken_101|>": 50357, "<|extratoken_138|>": 50394, "<|extratoken_10|>": 50266, "<|extratoken_21|>": 50277, "<|extratoken_32|>": 50288, "<|extratoken_46|>": 50302, "<|extratoken_22|>": 50278, "<|extratoken_40|>": 50296, "<|extratoken_96|>": 50352, "<|extratoken_92|>": 50348, "<|extratoken_95|>": 50351, "<|extratoken_141|>": 50397, "<|extratoken_78|>": 50334, "<|extratoken_86|>": 50342, "<|extratoken_56|>": 50312, "<|extratoken_124|>": 50380, "<|extratoken_127|>": 50383, "<|extratoken_122|>": 50378, "<|extratoken_123|>": 50379, "<|extratoken_111|>": 50367, "<|extratoken_93|>": 50349, "<|extratoken_130|>": 50386, "<|extratoken_113|>": 50369, "<|extratoken_50|>": 50306, "<|extratoken_97|>": 50353, "<|extratoken_1|>": 50257, "<|extratoken_55|>": 50311, "<|extratoken_34|>": 50290, "<|extratoken_143|>": 50399, "<|extratoken_62|>": 50318, "<|extratoken_74|>": 50330, "<|extratoken_136|>": 50392, "<|extratoken_117|>": 50373, "<|extratoken_38|>": 50294, "<|extratoken_120|>": 50376, "<|extratoken_39|>": 50295, "<|extratoken_65|>": 50321, "<|extratoken_29|>": 50285, "<|extratoken_104|>": 50360, "<|extratoken_13|>": 50269, "<|extratoken_5|>": 50261, "<|extratoken_107|>": 50363, "<|extratoken_19|>": 50275, "<|extratoken_84|>": 50340, "<|extratoken_77|>": 50333, "<|extratoken_135|>": 50391, "<|extratoken_24|>": 50280, "<|extratoken_134|>": 50390, "<|extratoken_15|>": 50271, "<|extratoken_67|>": 50323, "<|extratoken_89|>": 50345, "<|extratoken_2|>": 50258, "<|extratoken_73|>": 50329, "<|extratoken_129|>": 50385, "<|extratoken_126|>": 50382, "<|extratoken_30|>": 50286, "<|extratoken_41|>": 50297, "<|extratoken_28|>": 50284, "<|extratoken_114|>": 50370, "<|extratoken_128|>": 50384, "<|extratoken_118|>": 50374, "<|extratoken_131|>": 50387, "<|extratoken_68|>": 50324, "<|extratoken_125|>": 50381, "<|extratoken_103|>": 50359, "<|extratoken_8|>": 50264, "<|extratoken_64|>": 50320, "<|extratoken_52|>": 50308, "<|extratoken_45|>": 50301, "<|extratoken_43|>": 50299, "<|extratoken_18|>": 50274, "<|extratoken_139|>": 50395, "<|extratoken_85|>": 50341, "<|extratoken_88|>": 50344, "<|extratoken_63|>": 50319, "<|extratoken_4|>": 50260, "<|extratoken_48|>": 50304, "<|extratoken_112|>": 50368, "<|extratoken_17|>": 50273, "<|extratoken_49|>": 50305, "<|extratoken_108|>": 50364, "<|extratoken_110|>": 50366, "<|extratoken_42|>": 50298, "<|extratoken_70|>": 50326, "<|extratoken_6|>": 50262, "<|extratoken_35|>": 50291, "<|extratoken_23|>": 50279, "<|extratoken_66|>": 50322, "<|extratoken_60|>": 50316, "<|extratoken_71|>": 50327, "<|extratoken_51|>": 50307, "<|extratoken_133|>": 50389, "<|extratoken_20|>": 50276, "<|extratoken_76|>": 50332, "<|extratoken_81|>": 50337, "<|extratoken_142|>": 50398, "<|extratoken_116|>": 50372, "<|extratoken_57|>": 50313, "<|extratoken_75|>": 50331, "<|extratoken_37|>": 50293, "<|extratoken_33|>": 50289, "<|extratoken_16|>": 50272, "<|extratoken_61|>": 50317, "<|extratoken_7|>": 50263, "<|extratoken_12|>": 50268, "<|extratoken_36|>": 50292, "<|extratoken_80|>": 50336, "<|extratoken_98|>": 50354, "<|extratoken_105|>": 50361, "<|extratoken_91|>": 50347, "<|extratoken_53|>": 50309, "<|extratoken_137|>": 50393, "<|extratoken_9|>": 50265, "<|extratoken_79|>": 50335, "<|extratoken_83|>": 50339, "<|extratoken_109|>": 50365, "<|extratoken_99|>": 50355, "<|extratoken_140|>": 50396, "<|extratoken_72|>": 50328, "<|extratoken_11|>": 50267, "<|extratoken_94|>": 50350, "<|extratoken_26|>": 50282, "<|extratoken_59|>": 50315, "<|extratoken_106|>": 50362, "<|extratoken_115|>": 50371, "<|extratoken_58|>": 50314, "<|extratoken_90|>": 50346, "<|extratoken_31|>": 50287, "<|extratoken_102|>": 50358, "<|extratoken_47|>": 50303, "<|extratoken_100|>": 50356, "<|extratoken_82|>": 50338, "<|extratoken_44|>": 50300, "<|extratoken_69|>": 50325, "<|extratoken_54|>": 50310, "<|extratoken_132|>": 50388, "<|extratoken_27|>": 50283, "<|extratoken_87|>": 50343, "<|extratoken_119|>": 50375}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5187fa4b65af98a681d57fe88b97606612702bf0239e0faee4cf69c7a9d5a03e
|
3 |
+
size 12101781268
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|