michaelfeil commited on
Commit
5e28552
1 Parent(s): feff0f9

Upload thenlper/gte-base ctranslate2 weights

Browse files
README.md ADDED
@@ -0,0 +1,2771 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - ctranslate2
4
+ - int8
5
+ - float16
6
+ - mteb
7
+ - sentence-similarity
8
+ - sentence-transformers
9
+ - Sentence Transformers
10
+ model-index:
11
+ - name: gte-base
12
+ results:
13
+ - task:
14
+ type: Classification
15
+ dataset:
16
+ type: mteb/amazon_counterfactual
17
+ name: MTEB AmazonCounterfactualClassification (en)
18
+ config: en
19
+ split: test
20
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
21
+ metrics:
22
+ - type: accuracy
23
+ value: 74.17910447761193
24
+ - type: ap
25
+ value: 36.827146398068926
26
+ - type: f1
27
+ value: 68.11292888046363
28
+ - task:
29
+ type: Classification
30
+ dataset:
31
+ type: mteb/amazon_polarity
32
+ name: MTEB AmazonPolarityClassification
33
+ config: default
34
+ split: test
35
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
36
+ metrics:
37
+ - type: accuracy
38
+ value: 91.77345000000001
39
+ - type: ap
40
+ value: 88.33530426691347
41
+ - type: f1
42
+ value: 91.76549906404642
43
+ - task:
44
+ type: Classification
45
+ dataset:
46
+ type: mteb/amazon_reviews_multi
47
+ name: MTEB AmazonReviewsClassification (en)
48
+ config: en
49
+ split: test
50
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
51
+ metrics:
52
+ - type: accuracy
53
+ value: 48.964
54
+ - type: f1
55
+ value: 48.22995586184998
56
+ - task:
57
+ type: Retrieval
58
+ dataset:
59
+ type: arguana
60
+ name: MTEB ArguAna
61
+ config: default
62
+ split: test
63
+ revision: None
64
+ metrics:
65
+ - type: map_at_1
66
+ value: 32.147999999999996
67
+ - type: map_at_10
68
+ value: 48.253
69
+ - type: map_at_100
70
+ value: 49.038
71
+ - type: map_at_1000
72
+ value: 49.042
73
+ - type: map_at_3
74
+ value: 43.433
75
+ - type: map_at_5
76
+ value: 46.182
77
+ - type: mrr_at_1
78
+ value: 32.717
79
+ - type: mrr_at_10
80
+ value: 48.467
81
+ - type: mrr_at_100
82
+ value: 49.252
83
+ - type: mrr_at_1000
84
+ value: 49.254999999999995
85
+ - type: mrr_at_3
86
+ value: 43.599
87
+ - type: mrr_at_5
88
+ value: 46.408
89
+ - type: ndcg_at_1
90
+ value: 32.147999999999996
91
+ - type: ndcg_at_10
92
+ value: 57.12199999999999
93
+ - type: ndcg_at_100
94
+ value: 60.316
95
+ - type: ndcg_at_1000
96
+ value: 60.402
97
+ - type: ndcg_at_3
98
+ value: 47.178
99
+ - type: ndcg_at_5
100
+ value: 52.146
101
+ - type: precision_at_1
102
+ value: 32.147999999999996
103
+ - type: precision_at_10
104
+ value: 8.542
105
+ - type: precision_at_100
106
+ value: 0.9900000000000001
107
+ - type: precision_at_1000
108
+ value: 0.1
109
+ - type: precision_at_3
110
+ value: 19.346
111
+ - type: precision_at_5
112
+ value: 14.026
113
+ - type: recall_at_1
114
+ value: 32.147999999999996
115
+ - type: recall_at_10
116
+ value: 85.42
117
+ - type: recall_at_100
118
+ value: 99.004
119
+ - type: recall_at_1000
120
+ value: 99.644
121
+ - type: recall_at_3
122
+ value: 58.037000000000006
123
+ - type: recall_at_5
124
+ value: 70.128
125
+ - task:
126
+ type: Clustering
127
+ dataset:
128
+ type: mteb/arxiv-clustering-p2p
129
+ name: MTEB ArxivClusteringP2P
130
+ config: default
131
+ split: test
132
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
133
+ metrics:
134
+ - type: v_measure
135
+ value: 48.59706013699614
136
+ - task:
137
+ type: Clustering
138
+ dataset:
139
+ type: mteb/arxiv-clustering-s2s
140
+ name: MTEB ArxivClusteringS2S
141
+ config: default
142
+ split: test
143
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
144
+ metrics:
145
+ - type: v_measure
146
+ value: 43.01463593002057
147
+ - task:
148
+ type: Reranking
149
+ dataset:
150
+ type: mteb/askubuntudupquestions-reranking
151
+ name: MTEB AskUbuntuDupQuestions
152
+ config: default
153
+ split: test
154
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
155
+ metrics:
156
+ - type: map
157
+ value: 61.80250355752458
158
+ - type: mrr
159
+ value: 74.79455216989844
160
+ - task:
161
+ type: STS
162
+ dataset:
163
+ type: mteb/biosses-sts
164
+ name: MTEB BIOSSES
165
+ config: default
166
+ split: test
167
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
168
+ metrics:
169
+ - type: cos_sim_pearson
170
+ value: 89.87448576082345
171
+ - type: cos_sim_spearman
172
+ value: 87.64235843637468
173
+ - type: euclidean_pearson
174
+ value: 88.4901825511062
175
+ - type: euclidean_spearman
176
+ value: 87.74537283182033
177
+ - type: manhattan_pearson
178
+ value: 88.39040638362911
179
+ - type: manhattan_spearman
180
+ value: 87.62669542888003
181
+ - task:
182
+ type: Classification
183
+ dataset:
184
+ type: mteb/banking77
185
+ name: MTEB Banking77Classification
186
+ config: default
187
+ split: test
188
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
189
+ metrics:
190
+ - type: accuracy
191
+ value: 85.06818181818183
192
+ - type: f1
193
+ value: 85.02524460098233
194
+ - task:
195
+ type: Clustering
196
+ dataset:
197
+ type: mteb/biorxiv-clustering-p2p
198
+ name: MTEB BiorxivClusteringP2P
199
+ config: default
200
+ split: test
201
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
202
+ metrics:
203
+ - type: v_measure
204
+ value: 38.20471092679967
205
+ - task:
206
+ type: Clustering
207
+ dataset:
208
+ type: mteb/biorxiv-clustering-s2s
209
+ name: MTEB BiorxivClusteringS2S
210
+ config: default
211
+ split: test
212
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
213
+ metrics:
214
+ - type: v_measure
215
+ value: 36.58967592147641
216
+ - task:
217
+ type: Retrieval
218
+ dataset:
219
+ type: BeIR/cqadupstack
220
+ name: MTEB CQADupstackAndroidRetrieval
221
+ config: default
222
+ split: test
223
+ revision: None
224
+ metrics:
225
+ - type: map_at_1
226
+ value: 32.411
227
+ - type: map_at_10
228
+ value: 45.162
229
+ - type: map_at_100
230
+ value: 46.717
231
+ - type: map_at_1000
232
+ value: 46.836
233
+ - type: map_at_3
234
+ value: 41.428
235
+ - type: map_at_5
236
+ value: 43.54
237
+ - type: mrr_at_1
238
+ value: 39.914
239
+ - type: mrr_at_10
240
+ value: 51.534
241
+ - type: mrr_at_100
242
+ value: 52.185
243
+ - type: mrr_at_1000
244
+ value: 52.22
245
+ - type: mrr_at_3
246
+ value: 49.046
247
+ - type: mrr_at_5
248
+ value: 50.548
249
+ - type: ndcg_at_1
250
+ value: 39.914
251
+ - type: ndcg_at_10
252
+ value: 52.235
253
+ - type: ndcg_at_100
254
+ value: 57.4
255
+ - type: ndcg_at_1000
256
+ value: 58.982
257
+ - type: ndcg_at_3
258
+ value: 47.332
259
+ - type: ndcg_at_5
260
+ value: 49.62
261
+ - type: precision_at_1
262
+ value: 39.914
263
+ - type: precision_at_10
264
+ value: 10.258000000000001
265
+ - type: precision_at_100
266
+ value: 1.6219999999999999
267
+ - type: precision_at_1000
268
+ value: 0.20500000000000002
269
+ - type: precision_at_3
270
+ value: 23.462
271
+ - type: precision_at_5
272
+ value: 16.71
273
+ - type: recall_at_1
274
+ value: 32.411
275
+ - type: recall_at_10
276
+ value: 65.408
277
+ - type: recall_at_100
278
+ value: 87.248
279
+ - type: recall_at_1000
280
+ value: 96.951
281
+ - type: recall_at_3
282
+ value: 50.349999999999994
283
+ - type: recall_at_5
284
+ value: 57.431
285
+ - task:
286
+ type: Retrieval
287
+ dataset:
288
+ type: BeIR/cqadupstack
289
+ name: MTEB CQADupstackEnglishRetrieval
290
+ config: default
291
+ split: test
292
+ revision: None
293
+ metrics:
294
+ - type: map_at_1
295
+ value: 31.911
296
+ - type: map_at_10
297
+ value: 42.608000000000004
298
+ - type: map_at_100
299
+ value: 43.948
300
+ - type: map_at_1000
301
+ value: 44.089
302
+ - type: map_at_3
303
+ value: 39.652
304
+ - type: map_at_5
305
+ value: 41.236
306
+ - type: mrr_at_1
307
+ value: 40.064
308
+ - type: mrr_at_10
309
+ value: 48.916
310
+ - type: mrr_at_100
311
+ value: 49.539
312
+ - type: mrr_at_1000
313
+ value: 49.583
314
+ - type: mrr_at_3
315
+ value: 46.741
316
+ - type: mrr_at_5
317
+ value: 48.037
318
+ - type: ndcg_at_1
319
+ value: 40.064
320
+ - type: ndcg_at_10
321
+ value: 48.442
322
+ - type: ndcg_at_100
323
+ value: 52.798
324
+ - type: ndcg_at_1000
325
+ value: 54.871
326
+ - type: ndcg_at_3
327
+ value: 44.528
328
+ - type: ndcg_at_5
329
+ value: 46.211
330
+ - type: precision_at_1
331
+ value: 40.064
332
+ - type: precision_at_10
333
+ value: 9.178
334
+ - type: precision_at_100
335
+ value: 1.452
336
+ - type: precision_at_1000
337
+ value: 0.193
338
+ - type: precision_at_3
339
+ value: 21.614
340
+ - type: precision_at_5
341
+ value: 15.185
342
+ - type: recall_at_1
343
+ value: 31.911
344
+ - type: recall_at_10
345
+ value: 58.155
346
+ - type: recall_at_100
347
+ value: 76.46300000000001
348
+ - type: recall_at_1000
349
+ value: 89.622
350
+ - type: recall_at_3
351
+ value: 46.195
352
+ - type: recall_at_5
353
+ value: 51.288999999999994
354
+ - task:
355
+ type: Retrieval
356
+ dataset:
357
+ type: BeIR/cqadupstack
358
+ name: MTEB CQADupstackGamingRetrieval
359
+ config: default
360
+ split: test
361
+ revision: None
362
+ metrics:
363
+ - type: map_at_1
364
+ value: 40.597
365
+ - type: map_at_10
366
+ value: 54.290000000000006
367
+ - type: map_at_100
368
+ value: 55.340999999999994
369
+ - type: map_at_1000
370
+ value: 55.388999999999996
371
+ - type: map_at_3
372
+ value: 50.931000000000004
373
+ - type: map_at_5
374
+ value: 52.839999999999996
375
+ - type: mrr_at_1
376
+ value: 46.646
377
+ - type: mrr_at_10
378
+ value: 57.524
379
+ - type: mrr_at_100
380
+ value: 58.225
381
+ - type: mrr_at_1000
382
+ value: 58.245999999999995
383
+ - type: mrr_at_3
384
+ value: 55.235
385
+ - type: mrr_at_5
386
+ value: 56.589
387
+ - type: ndcg_at_1
388
+ value: 46.646
389
+ - type: ndcg_at_10
390
+ value: 60.324999999999996
391
+ - type: ndcg_at_100
392
+ value: 64.30900000000001
393
+ - type: ndcg_at_1000
394
+ value: 65.19
395
+ - type: ndcg_at_3
396
+ value: 54.983000000000004
397
+ - type: ndcg_at_5
398
+ value: 57.621
399
+ - type: precision_at_1
400
+ value: 46.646
401
+ - type: precision_at_10
402
+ value: 9.774
403
+ - type: precision_at_100
404
+ value: 1.265
405
+ - type: precision_at_1000
406
+ value: 0.13799999999999998
407
+ - type: precision_at_3
408
+ value: 24.911
409
+ - type: precision_at_5
410
+ value: 16.977999999999998
411
+ - type: recall_at_1
412
+ value: 40.597
413
+ - type: recall_at_10
414
+ value: 74.773
415
+ - type: recall_at_100
416
+ value: 91.61200000000001
417
+ - type: recall_at_1000
418
+ value: 97.726
419
+ - type: recall_at_3
420
+ value: 60.458
421
+ - type: recall_at_5
422
+ value: 66.956
423
+ - task:
424
+ type: Retrieval
425
+ dataset:
426
+ type: BeIR/cqadupstack
427
+ name: MTEB CQADupstackGisRetrieval
428
+ config: default
429
+ split: test
430
+ revision: None
431
+ metrics:
432
+ - type: map_at_1
433
+ value: 27.122
434
+ - type: map_at_10
435
+ value: 36.711
436
+ - type: map_at_100
437
+ value: 37.775
438
+ - type: map_at_1000
439
+ value: 37.842999999999996
440
+ - type: map_at_3
441
+ value: 33.693
442
+ - type: map_at_5
443
+ value: 35.607
444
+ - type: mrr_at_1
445
+ value: 29.153000000000002
446
+ - type: mrr_at_10
447
+ value: 38.873999999999995
448
+ - type: mrr_at_100
449
+ value: 39.739000000000004
450
+ - type: mrr_at_1000
451
+ value: 39.794000000000004
452
+ - type: mrr_at_3
453
+ value: 36.102000000000004
454
+ - type: mrr_at_5
455
+ value: 37.876
456
+ - type: ndcg_at_1
457
+ value: 29.153000000000002
458
+ - type: ndcg_at_10
459
+ value: 42.048
460
+ - type: ndcg_at_100
461
+ value: 47.144999999999996
462
+ - type: ndcg_at_1000
463
+ value: 48.901
464
+ - type: ndcg_at_3
465
+ value: 36.402
466
+ - type: ndcg_at_5
467
+ value: 39.562999999999995
468
+ - type: precision_at_1
469
+ value: 29.153000000000002
470
+ - type: precision_at_10
471
+ value: 6.4750000000000005
472
+ - type: precision_at_100
473
+ value: 0.951
474
+ - type: precision_at_1000
475
+ value: 0.11299999999999999
476
+ - type: precision_at_3
477
+ value: 15.479999999999999
478
+ - type: precision_at_5
479
+ value: 11.028
480
+ - type: recall_at_1
481
+ value: 27.122
482
+ - type: recall_at_10
483
+ value: 56.279999999999994
484
+ - type: recall_at_100
485
+ value: 79.597
486
+ - type: recall_at_1000
487
+ value: 92.804
488
+ - type: recall_at_3
489
+ value: 41.437000000000005
490
+ - type: recall_at_5
491
+ value: 49.019
492
+ - task:
493
+ type: Retrieval
494
+ dataset:
495
+ type: BeIR/cqadupstack
496
+ name: MTEB CQADupstackMathematicaRetrieval
497
+ config: default
498
+ split: test
499
+ revision: None
500
+ metrics:
501
+ - type: map_at_1
502
+ value: 17.757
503
+ - type: map_at_10
504
+ value: 26.739
505
+ - type: map_at_100
506
+ value: 28.015
507
+ - type: map_at_1000
508
+ value: 28.127999999999997
509
+ - type: map_at_3
510
+ value: 23.986
511
+ - type: map_at_5
512
+ value: 25.514
513
+ - type: mrr_at_1
514
+ value: 22.015
515
+ - type: mrr_at_10
516
+ value: 31.325999999999997
517
+ - type: mrr_at_100
518
+ value: 32.368
519
+ - type: mrr_at_1000
520
+ value: 32.426
521
+ - type: mrr_at_3
522
+ value: 28.897000000000002
523
+ - type: mrr_at_5
524
+ value: 30.147000000000002
525
+ - type: ndcg_at_1
526
+ value: 22.015
527
+ - type: ndcg_at_10
528
+ value: 32.225
529
+ - type: ndcg_at_100
530
+ value: 38.405
531
+ - type: ndcg_at_1000
532
+ value: 40.932
533
+ - type: ndcg_at_3
534
+ value: 27.403
535
+ - type: ndcg_at_5
536
+ value: 29.587000000000003
537
+ - type: precision_at_1
538
+ value: 22.015
539
+ - type: precision_at_10
540
+ value: 5.9830000000000005
541
+ - type: precision_at_100
542
+ value: 1.051
543
+ - type: precision_at_1000
544
+ value: 0.13899999999999998
545
+ - type: precision_at_3
546
+ value: 13.391
547
+ - type: precision_at_5
548
+ value: 9.602
549
+ - type: recall_at_1
550
+ value: 17.757
551
+ - type: recall_at_10
552
+ value: 44.467
553
+ - type: recall_at_100
554
+ value: 71.53699999999999
555
+ - type: recall_at_1000
556
+ value: 89.281
557
+ - type: recall_at_3
558
+ value: 31.095
559
+ - type: recall_at_5
560
+ value: 36.818
561
+ - task:
562
+ type: Retrieval
563
+ dataset:
564
+ type: BeIR/cqadupstack
565
+ name: MTEB CQADupstackPhysicsRetrieval
566
+ config: default
567
+ split: test
568
+ revision: None
569
+ metrics:
570
+ - type: map_at_1
571
+ value: 30.354
572
+ - type: map_at_10
573
+ value: 42.134
574
+ - type: map_at_100
575
+ value: 43.429
576
+ - type: map_at_1000
577
+ value: 43.532
578
+ - type: map_at_3
579
+ value: 38.491
580
+ - type: map_at_5
581
+ value: 40.736
582
+ - type: mrr_at_1
583
+ value: 37.247
584
+ - type: mrr_at_10
585
+ value: 47.775
586
+ - type: mrr_at_100
587
+ value: 48.522999999999996
588
+ - type: mrr_at_1000
589
+ value: 48.567
590
+ - type: mrr_at_3
591
+ value: 45.059
592
+ - type: mrr_at_5
593
+ value: 46.811
594
+ - type: ndcg_at_1
595
+ value: 37.247
596
+ - type: ndcg_at_10
597
+ value: 48.609
598
+ - type: ndcg_at_100
599
+ value: 53.782
600
+ - type: ndcg_at_1000
601
+ value: 55.666000000000004
602
+ - type: ndcg_at_3
603
+ value: 42.866
604
+ - type: ndcg_at_5
605
+ value: 46.001
606
+ - type: precision_at_1
607
+ value: 37.247
608
+ - type: precision_at_10
609
+ value: 8.892999999999999
610
+ - type: precision_at_100
611
+ value: 1.341
612
+ - type: precision_at_1000
613
+ value: 0.168
614
+ - type: precision_at_3
615
+ value: 20.5
616
+ - type: precision_at_5
617
+ value: 14.976
618
+ - type: recall_at_1
619
+ value: 30.354
620
+ - type: recall_at_10
621
+ value: 62.273
622
+ - type: recall_at_100
623
+ value: 83.65599999999999
624
+ - type: recall_at_1000
625
+ value: 95.82000000000001
626
+ - type: recall_at_3
627
+ value: 46.464
628
+ - type: recall_at_5
629
+ value: 54.225
630
+ - task:
631
+ type: Retrieval
632
+ dataset:
633
+ type: BeIR/cqadupstack
634
+ name: MTEB CQADupstackProgrammersRetrieval
635
+ config: default
636
+ split: test
637
+ revision: None
638
+ metrics:
639
+ - type: map_at_1
640
+ value: 26.949
641
+ - type: map_at_10
642
+ value: 37.230000000000004
643
+ - type: map_at_100
644
+ value: 38.644
645
+ - type: map_at_1000
646
+ value: 38.751999999999995
647
+ - type: map_at_3
648
+ value: 33.816
649
+ - type: map_at_5
650
+ value: 35.817
651
+ - type: mrr_at_1
652
+ value: 33.446999999999996
653
+ - type: mrr_at_10
654
+ value: 42.970000000000006
655
+ - type: mrr_at_100
656
+ value: 43.873
657
+ - type: mrr_at_1000
658
+ value: 43.922
659
+ - type: mrr_at_3
660
+ value: 40.467999999999996
661
+ - type: mrr_at_5
662
+ value: 41.861
663
+ - type: ndcg_at_1
664
+ value: 33.446999999999996
665
+ - type: ndcg_at_10
666
+ value: 43.403000000000006
667
+ - type: ndcg_at_100
668
+ value: 49.247
669
+ - type: ndcg_at_1000
670
+ value: 51.361999999999995
671
+ - type: ndcg_at_3
672
+ value: 38.155
673
+ - type: ndcg_at_5
674
+ value: 40.643
675
+ - type: precision_at_1
676
+ value: 33.446999999999996
677
+ - type: precision_at_10
678
+ value: 8.128
679
+ - type: precision_at_100
680
+ value: 1.274
681
+ - type: precision_at_1000
682
+ value: 0.163
683
+ - type: precision_at_3
684
+ value: 18.493000000000002
685
+ - type: precision_at_5
686
+ value: 13.333
687
+ - type: recall_at_1
688
+ value: 26.949
689
+ - type: recall_at_10
690
+ value: 56.006
691
+ - type: recall_at_100
692
+ value: 80.99199999999999
693
+ - type: recall_at_1000
694
+ value: 95.074
695
+ - type: recall_at_3
696
+ value: 40.809
697
+ - type: recall_at_5
698
+ value: 47.57
699
+ - task:
700
+ type: Retrieval
701
+ dataset:
702
+ type: BeIR/cqadupstack
703
+ name: MTEB CQADupstackRetrieval
704
+ config: default
705
+ split: test
706
+ revision: None
707
+ metrics:
708
+ - type: map_at_1
709
+ value: 27.243583333333333
710
+ - type: map_at_10
711
+ value: 37.193250000000006
712
+ - type: map_at_100
713
+ value: 38.44833333333334
714
+ - type: map_at_1000
715
+ value: 38.56083333333333
716
+ - type: map_at_3
717
+ value: 34.06633333333333
718
+ - type: map_at_5
719
+ value: 35.87858333333334
720
+ - type: mrr_at_1
721
+ value: 32.291583333333335
722
+ - type: mrr_at_10
723
+ value: 41.482749999999996
724
+ - type: mrr_at_100
725
+ value: 42.33583333333333
726
+ - type: mrr_at_1000
727
+ value: 42.38683333333333
728
+ - type: mrr_at_3
729
+ value: 38.952999999999996
730
+ - type: mrr_at_5
731
+ value: 40.45333333333333
732
+ - type: ndcg_at_1
733
+ value: 32.291583333333335
734
+ - type: ndcg_at_10
735
+ value: 42.90533333333334
736
+ - type: ndcg_at_100
737
+ value: 48.138666666666666
738
+ - type: ndcg_at_1000
739
+ value: 50.229083333333335
740
+ - type: ndcg_at_3
741
+ value: 37.76133333333334
742
+ - type: ndcg_at_5
743
+ value: 40.31033333333334
744
+ - type: precision_at_1
745
+ value: 32.291583333333335
746
+ - type: precision_at_10
747
+ value: 7.585583333333333
748
+ - type: precision_at_100
749
+ value: 1.2045000000000001
750
+ - type: precision_at_1000
751
+ value: 0.15733333333333335
752
+ - type: precision_at_3
753
+ value: 17.485416666666666
754
+ - type: precision_at_5
755
+ value: 12.5145
756
+ - type: recall_at_1
757
+ value: 27.243583333333333
758
+ - type: recall_at_10
759
+ value: 55.45108333333334
760
+ - type: recall_at_100
761
+ value: 78.25858333333335
762
+ - type: recall_at_1000
763
+ value: 92.61716666666665
764
+ - type: recall_at_3
765
+ value: 41.130583333333334
766
+ - type: recall_at_5
767
+ value: 47.73133333333334
768
+ - task:
769
+ type: Retrieval
770
+ dataset:
771
+ type: BeIR/cqadupstack
772
+ name: MTEB CQADupstackStatsRetrieval
773
+ config: default
774
+ split: test
775
+ revision: None
776
+ metrics:
777
+ - type: map_at_1
778
+ value: 26.325
779
+ - type: map_at_10
780
+ value: 32.795
781
+ - type: map_at_100
782
+ value: 33.96
783
+ - type: map_at_1000
784
+ value: 34.054
785
+ - type: map_at_3
786
+ value: 30.64
787
+ - type: map_at_5
788
+ value: 31.771
789
+ - type: mrr_at_1
790
+ value: 29.908
791
+ - type: mrr_at_10
792
+ value: 35.83
793
+ - type: mrr_at_100
794
+ value: 36.868
795
+ - type: mrr_at_1000
796
+ value: 36.928
797
+ - type: mrr_at_3
798
+ value: 33.896
799
+ - type: mrr_at_5
800
+ value: 34.893
801
+ - type: ndcg_at_1
802
+ value: 29.908
803
+ - type: ndcg_at_10
804
+ value: 36.746
805
+ - type: ndcg_at_100
806
+ value: 42.225
807
+ - type: ndcg_at_1000
808
+ value: 44.523
809
+ - type: ndcg_at_3
810
+ value: 32.82
811
+ - type: ndcg_at_5
812
+ value: 34.583000000000006
813
+ - type: precision_at_1
814
+ value: 29.908
815
+ - type: precision_at_10
816
+ value: 5.6129999999999995
817
+ - type: precision_at_100
818
+ value: 0.9079999999999999
819
+ - type: precision_at_1000
820
+ value: 0.11800000000000001
821
+ - type: precision_at_3
822
+ value: 13.753000000000002
823
+ - type: precision_at_5
824
+ value: 9.417
825
+ - type: recall_at_1
826
+ value: 26.325
827
+ - type: recall_at_10
828
+ value: 45.975
829
+ - type: recall_at_100
830
+ value: 70.393
831
+ - type: recall_at_1000
832
+ value: 87.217
833
+ - type: recall_at_3
834
+ value: 35.195
835
+ - type: recall_at_5
836
+ value: 39.69
837
+ - task:
838
+ type: Retrieval
839
+ dataset:
840
+ type: BeIR/cqadupstack
841
+ name: MTEB CQADupstackTexRetrieval
842
+ config: default
843
+ split: test
844
+ revision: None
845
+ metrics:
846
+ - type: map_at_1
847
+ value: 17.828
848
+ - type: map_at_10
849
+ value: 25.759
850
+ - type: map_at_100
851
+ value: 26.961000000000002
852
+ - type: map_at_1000
853
+ value: 27.094
854
+ - type: map_at_3
855
+ value: 23.166999999999998
856
+ - type: map_at_5
857
+ value: 24.610000000000003
858
+ - type: mrr_at_1
859
+ value: 21.61
860
+ - type: mrr_at_10
861
+ value: 29.605999999999998
862
+ - type: mrr_at_100
863
+ value: 30.586000000000002
864
+ - type: mrr_at_1000
865
+ value: 30.664
866
+ - type: mrr_at_3
867
+ value: 27.214
868
+ - type: mrr_at_5
869
+ value: 28.571
870
+ - type: ndcg_at_1
871
+ value: 21.61
872
+ - type: ndcg_at_10
873
+ value: 30.740000000000002
874
+ - type: ndcg_at_100
875
+ value: 36.332
876
+ - type: ndcg_at_1000
877
+ value: 39.296
878
+ - type: ndcg_at_3
879
+ value: 26.11
880
+ - type: ndcg_at_5
881
+ value: 28.297
882
+ - type: precision_at_1
883
+ value: 21.61
884
+ - type: precision_at_10
885
+ value: 5.643
886
+ - type: precision_at_100
887
+ value: 1.0
888
+ - type: precision_at_1000
889
+ value: 0.14400000000000002
890
+ - type: precision_at_3
891
+ value: 12.4
892
+ - type: precision_at_5
893
+ value: 9.119
894
+ - type: recall_at_1
895
+ value: 17.828
896
+ - type: recall_at_10
897
+ value: 41.876000000000005
898
+ - type: recall_at_100
899
+ value: 66.648
900
+ - type: recall_at_1000
901
+ value: 87.763
902
+ - type: recall_at_3
903
+ value: 28.957
904
+ - type: recall_at_5
905
+ value: 34.494
906
+ - task:
907
+ type: Retrieval
908
+ dataset:
909
+ type: BeIR/cqadupstack
910
+ name: MTEB CQADupstackUnixRetrieval
911
+ config: default
912
+ split: test
913
+ revision: None
914
+ metrics:
915
+ - type: map_at_1
916
+ value: 27.921000000000003
917
+ - type: map_at_10
918
+ value: 37.156
919
+ - type: map_at_100
920
+ value: 38.399
921
+ - type: map_at_1000
922
+ value: 38.498
923
+ - type: map_at_3
924
+ value: 34.134
925
+ - type: map_at_5
926
+ value: 35.936
927
+ - type: mrr_at_1
928
+ value: 32.649
929
+ - type: mrr_at_10
930
+ value: 41.19
931
+ - type: mrr_at_100
932
+ value: 42.102000000000004
933
+ - type: mrr_at_1000
934
+ value: 42.157
935
+ - type: mrr_at_3
936
+ value: 38.464
937
+ - type: mrr_at_5
938
+ value: 40.148
939
+ - type: ndcg_at_1
940
+ value: 32.649
941
+ - type: ndcg_at_10
942
+ value: 42.679
943
+ - type: ndcg_at_100
944
+ value: 48.27
945
+ - type: ndcg_at_1000
946
+ value: 50.312
947
+ - type: ndcg_at_3
948
+ value: 37.269000000000005
949
+ - type: ndcg_at_5
950
+ value: 40.055
951
+ - type: precision_at_1
952
+ value: 32.649
953
+ - type: precision_at_10
954
+ value: 7.155
955
+ - type: precision_at_100
956
+ value: 1.124
957
+ - type: precision_at_1000
958
+ value: 0.14100000000000001
959
+ - type: precision_at_3
960
+ value: 16.791
961
+ - type: precision_at_5
962
+ value: 12.015
963
+ - type: recall_at_1
964
+ value: 27.921000000000003
965
+ - type: recall_at_10
966
+ value: 55.357
967
+ - type: recall_at_100
968
+ value: 79.476
969
+ - type: recall_at_1000
970
+ value: 93.314
971
+ - type: recall_at_3
972
+ value: 40.891
973
+ - type: recall_at_5
974
+ value: 47.851
975
+ - task:
976
+ type: Retrieval
977
+ dataset:
978
+ type: BeIR/cqadupstack
979
+ name: MTEB CQADupstackWebmastersRetrieval
980
+ config: default
981
+ split: test
982
+ revision: None
983
+ metrics:
984
+ - type: map_at_1
985
+ value: 25.524
986
+ - type: map_at_10
987
+ value: 35.135
988
+ - type: map_at_100
989
+ value: 36.665
990
+ - type: map_at_1000
991
+ value: 36.886
992
+ - type: map_at_3
993
+ value: 31.367
994
+ - type: map_at_5
995
+ value: 33.724
996
+ - type: mrr_at_1
997
+ value: 30.631999999999998
998
+ - type: mrr_at_10
999
+ value: 39.616
1000
+ - type: mrr_at_100
1001
+ value: 40.54
1002
+ - type: mrr_at_1000
1003
+ value: 40.585
1004
+ - type: mrr_at_3
1005
+ value: 36.462
1006
+ - type: mrr_at_5
1007
+ value: 38.507999999999996
1008
+ - type: ndcg_at_1
1009
+ value: 30.631999999999998
1010
+ - type: ndcg_at_10
1011
+ value: 41.61
1012
+ - type: ndcg_at_100
1013
+ value: 47.249
1014
+ - type: ndcg_at_1000
1015
+ value: 49.662
1016
+ - type: ndcg_at_3
1017
+ value: 35.421
1018
+ - type: ndcg_at_5
1019
+ value: 38.811
1020
+ - type: precision_at_1
1021
+ value: 30.631999999999998
1022
+ - type: precision_at_10
1023
+ value: 8.123
1024
+ - type: precision_at_100
1025
+ value: 1.5810000000000002
1026
+ - type: precision_at_1000
1027
+ value: 0.245
1028
+ - type: precision_at_3
1029
+ value: 16.337
1030
+ - type: precision_at_5
1031
+ value: 12.568999999999999
1032
+ - type: recall_at_1
1033
+ value: 25.524
1034
+ - type: recall_at_10
1035
+ value: 54.994
1036
+ - type: recall_at_100
1037
+ value: 80.03099999999999
1038
+ - type: recall_at_1000
1039
+ value: 95.25099999999999
1040
+ - type: recall_at_3
1041
+ value: 37.563
1042
+ - type: recall_at_5
1043
+ value: 46.428999999999995
1044
+ - task:
1045
+ type: Retrieval
1046
+ dataset:
1047
+ type: BeIR/cqadupstack
1048
+ name: MTEB CQADupstackWordpressRetrieval
1049
+ config: default
1050
+ split: test
1051
+ revision: None
1052
+ metrics:
1053
+ - type: map_at_1
1054
+ value: 22.224
1055
+ - type: map_at_10
1056
+ value: 30.599999999999998
1057
+ - type: map_at_100
1058
+ value: 31.526
1059
+ - type: map_at_1000
1060
+ value: 31.629
1061
+ - type: map_at_3
1062
+ value: 27.491
1063
+ - type: map_at_5
1064
+ value: 29.212
1065
+ - type: mrr_at_1
1066
+ value: 24.214
1067
+ - type: mrr_at_10
1068
+ value: 32.632
1069
+ - type: mrr_at_100
1070
+ value: 33.482
1071
+ - type: mrr_at_1000
1072
+ value: 33.550000000000004
1073
+ - type: mrr_at_3
1074
+ value: 29.852
1075
+ - type: mrr_at_5
1076
+ value: 31.451
1077
+ - type: ndcg_at_1
1078
+ value: 24.214
1079
+ - type: ndcg_at_10
1080
+ value: 35.802
1081
+ - type: ndcg_at_100
1082
+ value: 40.502
1083
+ - type: ndcg_at_1000
1084
+ value: 43.052
1085
+ - type: ndcg_at_3
1086
+ value: 29.847
1087
+ - type: ndcg_at_5
1088
+ value: 32.732
1089
+ - type: precision_at_1
1090
+ value: 24.214
1091
+ - type: precision_at_10
1092
+ value: 5.804
1093
+ - type: precision_at_100
1094
+ value: 0.885
1095
+ - type: precision_at_1000
1096
+ value: 0.121
1097
+ - type: precision_at_3
1098
+ value: 12.692999999999998
1099
+ - type: precision_at_5
1100
+ value: 9.242
1101
+ - type: recall_at_1
1102
+ value: 22.224
1103
+ - type: recall_at_10
1104
+ value: 49.849
1105
+ - type: recall_at_100
1106
+ value: 71.45
1107
+ - type: recall_at_1000
1108
+ value: 90.583
1109
+ - type: recall_at_3
1110
+ value: 34.153
1111
+ - type: recall_at_5
1112
+ value: 41.004000000000005
1113
+ - task:
1114
+ type: Retrieval
1115
+ dataset:
1116
+ type: climate-fever
1117
+ name: MTEB ClimateFEVER
1118
+ config: default
1119
+ split: test
1120
+ revision: None
1121
+ metrics:
1122
+ - type: map_at_1
1123
+ value: 12.386999999999999
1124
+ - type: map_at_10
1125
+ value: 20.182
1126
+ - type: map_at_100
1127
+ value: 21.86
1128
+ - type: map_at_1000
1129
+ value: 22.054000000000002
1130
+ - type: map_at_3
1131
+ value: 17.165
1132
+ - type: map_at_5
1133
+ value: 18.643
1134
+ - type: mrr_at_1
1135
+ value: 26.906000000000002
1136
+ - type: mrr_at_10
1137
+ value: 37.907999999999994
1138
+ - type: mrr_at_100
1139
+ value: 38.868
1140
+ - type: mrr_at_1000
1141
+ value: 38.913
1142
+ - type: mrr_at_3
1143
+ value: 34.853
1144
+ - type: mrr_at_5
1145
+ value: 36.567
1146
+ - type: ndcg_at_1
1147
+ value: 26.906000000000002
1148
+ - type: ndcg_at_10
1149
+ value: 28.103
1150
+ - type: ndcg_at_100
1151
+ value: 35.073
1152
+ - type: ndcg_at_1000
1153
+ value: 38.653
1154
+ - type: ndcg_at_3
1155
+ value: 23.345
1156
+ - type: ndcg_at_5
1157
+ value: 24.828
1158
+ - type: precision_at_1
1159
+ value: 26.906000000000002
1160
+ - type: precision_at_10
1161
+ value: 8.547
1162
+ - type: precision_at_100
1163
+ value: 1.617
1164
+ - type: precision_at_1000
1165
+ value: 0.22799999999999998
1166
+ - type: precision_at_3
1167
+ value: 17.025000000000002
1168
+ - type: precision_at_5
1169
+ value: 12.834000000000001
1170
+ - type: recall_at_1
1171
+ value: 12.386999999999999
1172
+ - type: recall_at_10
1173
+ value: 33.306999999999995
1174
+ - type: recall_at_100
1175
+ value: 57.516
1176
+ - type: recall_at_1000
1177
+ value: 77.74799999999999
1178
+ - type: recall_at_3
1179
+ value: 21.433
1180
+ - type: recall_at_5
1181
+ value: 25.915
1182
+ - task:
1183
+ type: Retrieval
1184
+ dataset:
1185
+ type: dbpedia-entity
1186
+ name: MTEB DBPedia
1187
+ config: default
1188
+ split: test
1189
+ revision: None
1190
+ metrics:
1191
+ - type: map_at_1
1192
+ value: 9.322
1193
+ - type: map_at_10
1194
+ value: 20.469
1195
+ - type: map_at_100
1196
+ value: 28.638
1197
+ - type: map_at_1000
1198
+ value: 30.433
1199
+ - type: map_at_3
1200
+ value: 14.802000000000001
1201
+ - type: map_at_5
1202
+ value: 17.297
1203
+ - type: mrr_at_1
1204
+ value: 68.75
1205
+ - type: mrr_at_10
1206
+ value: 76.29599999999999
1207
+ - type: mrr_at_100
1208
+ value: 76.62400000000001
1209
+ - type: mrr_at_1000
1210
+ value: 76.633
1211
+ - type: mrr_at_3
1212
+ value: 75.083
1213
+ - type: mrr_at_5
1214
+ value: 75.771
1215
+ - type: ndcg_at_1
1216
+ value: 54.87499999999999
1217
+ - type: ndcg_at_10
1218
+ value: 41.185
1219
+ - type: ndcg_at_100
1220
+ value: 46.400000000000006
1221
+ - type: ndcg_at_1000
1222
+ value: 54.223
1223
+ - type: ndcg_at_3
1224
+ value: 45.489000000000004
1225
+ - type: ndcg_at_5
1226
+ value: 43.161
1227
+ - type: precision_at_1
1228
+ value: 68.75
1229
+ - type: precision_at_10
1230
+ value: 32.300000000000004
1231
+ - type: precision_at_100
1232
+ value: 10.607999999999999
1233
+ - type: precision_at_1000
1234
+ value: 2.237
1235
+ - type: precision_at_3
1236
+ value: 49.083
1237
+ - type: precision_at_5
1238
+ value: 41.6
1239
+ - type: recall_at_1
1240
+ value: 9.322
1241
+ - type: recall_at_10
1242
+ value: 25.696
1243
+ - type: recall_at_100
1244
+ value: 52.898
1245
+ - type: recall_at_1000
1246
+ value: 77.281
1247
+ - type: recall_at_3
1248
+ value: 15.943
1249
+ - type: recall_at_5
1250
+ value: 19.836000000000002
1251
+ - task:
1252
+ type: Classification
1253
+ dataset:
1254
+ type: mteb/emotion
1255
+ name: MTEB EmotionClassification
1256
+ config: default
1257
+ split: test
1258
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1259
+ metrics:
1260
+ - type: accuracy
1261
+ value: 48.650000000000006
1262
+ - type: f1
1263
+ value: 43.528467245539396
1264
+ - task:
1265
+ type: Retrieval
1266
+ dataset:
1267
+ type: fever
1268
+ name: MTEB FEVER
1269
+ config: default
1270
+ split: test
1271
+ revision: None
1272
+ metrics:
1273
+ - type: map_at_1
1274
+ value: 66.56
1275
+ - type: map_at_10
1276
+ value: 76.767
1277
+ - type: map_at_100
1278
+ value: 77.054
1279
+ - type: map_at_1000
1280
+ value: 77.068
1281
+ - type: map_at_3
1282
+ value: 75.29299999999999
1283
+ - type: map_at_5
1284
+ value: 76.24
1285
+ - type: mrr_at_1
1286
+ value: 71.842
1287
+ - type: mrr_at_10
1288
+ value: 81.459
1289
+ - type: mrr_at_100
1290
+ value: 81.58800000000001
1291
+ - type: mrr_at_1000
1292
+ value: 81.59100000000001
1293
+ - type: mrr_at_3
1294
+ value: 80.188
1295
+ - type: mrr_at_5
1296
+ value: 81.038
1297
+ - type: ndcg_at_1
1298
+ value: 71.842
1299
+ - type: ndcg_at_10
1300
+ value: 81.51899999999999
1301
+ - type: ndcg_at_100
1302
+ value: 82.544
1303
+ - type: ndcg_at_1000
1304
+ value: 82.829
1305
+ - type: ndcg_at_3
1306
+ value: 78.92
1307
+ - type: ndcg_at_5
1308
+ value: 80.406
1309
+ - type: precision_at_1
1310
+ value: 71.842
1311
+ - type: precision_at_10
1312
+ value: 10.066
1313
+ - type: precision_at_100
1314
+ value: 1.076
1315
+ - type: precision_at_1000
1316
+ value: 0.11199999999999999
1317
+ - type: precision_at_3
1318
+ value: 30.703000000000003
1319
+ - type: precision_at_5
1320
+ value: 19.301
1321
+ - type: recall_at_1
1322
+ value: 66.56
1323
+ - type: recall_at_10
1324
+ value: 91.55
1325
+ - type: recall_at_100
1326
+ value: 95.67099999999999
1327
+ - type: recall_at_1000
1328
+ value: 97.539
1329
+ - type: recall_at_3
1330
+ value: 84.46900000000001
1331
+ - type: recall_at_5
1332
+ value: 88.201
1333
+ - task:
1334
+ type: Retrieval
1335
+ dataset:
1336
+ type: fiqa
1337
+ name: MTEB FiQA2018
1338
+ config: default
1339
+ split: test
1340
+ revision: None
1341
+ metrics:
1342
+ - type: map_at_1
1343
+ value: 20.087
1344
+ - type: map_at_10
1345
+ value: 32.830999999999996
1346
+ - type: map_at_100
1347
+ value: 34.814
1348
+ - type: map_at_1000
1349
+ value: 34.999
1350
+ - type: map_at_3
1351
+ value: 28.198
1352
+ - type: map_at_5
1353
+ value: 30.779
1354
+ - type: mrr_at_1
1355
+ value: 38.889
1356
+ - type: mrr_at_10
1357
+ value: 48.415
1358
+ - type: mrr_at_100
1359
+ value: 49.187
1360
+ - type: mrr_at_1000
1361
+ value: 49.226
1362
+ - type: mrr_at_3
1363
+ value: 45.705
1364
+ - type: mrr_at_5
1365
+ value: 47.225
1366
+ - type: ndcg_at_1
1367
+ value: 38.889
1368
+ - type: ndcg_at_10
1369
+ value: 40.758
1370
+ - type: ndcg_at_100
1371
+ value: 47.671
1372
+ - type: ndcg_at_1000
1373
+ value: 50.744
1374
+ - type: ndcg_at_3
1375
+ value: 36.296
1376
+ - type: ndcg_at_5
1377
+ value: 37.852999999999994
1378
+ - type: precision_at_1
1379
+ value: 38.889
1380
+ - type: precision_at_10
1381
+ value: 11.466
1382
+ - type: precision_at_100
1383
+ value: 1.8499999999999999
1384
+ - type: precision_at_1000
1385
+ value: 0.24
1386
+ - type: precision_at_3
1387
+ value: 24.126
1388
+ - type: precision_at_5
1389
+ value: 18.21
1390
+ - type: recall_at_1
1391
+ value: 20.087
1392
+ - type: recall_at_10
1393
+ value: 48.042
1394
+ - type: recall_at_100
1395
+ value: 73.493
1396
+ - type: recall_at_1000
1397
+ value: 91.851
1398
+ - type: recall_at_3
1399
+ value: 32.694
1400
+ - type: recall_at_5
1401
+ value: 39.099000000000004
1402
+ - task:
1403
+ type: Retrieval
1404
+ dataset:
1405
+ type: hotpotqa
1406
+ name: MTEB HotpotQA
1407
+ config: default
1408
+ split: test
1409
+ revision: None
1410
+ metrics:
1411
+ - type: map_at_1
1412
+ value: 38.096000000000004
1413
+ - type: map_at_10
1414
+ value: 56.99999999999999
1415
+ - type: map_at_100
1416
+ value: 57.914
1417
+ - type: map_at_1000
1418
+ value: 57.984
1419
+ - type: map_at_3
1420
+ value: 53.900999999999996
1421
+ - type: map_at_5
1422
+ value: 55.827000000000005
1423
+ - type: mrr_at_1
1424
+ value: 76.19200000000001
1425
+ - type: mrr_at_10
1426
+ value: 81.955
1427
+ - type: mrr_at_100
1428
+ value: 82.164
1429
+ - type: mrr_at_1000
1430
+ value: 82.173
1431
+ - type: mrr_at_3
1432
+ value: 80.963
1433
+ - type: mrr_at_5
1434
+ value: 81.574
1435
+ - type: ndcg_at_1
1436
+ value: 76.19200000000001
1437
+ - type: ndcg_at_10
1438
+ value: 65.75
1439
+ - type: ndcg_at_100
1440
+ value: 68.949
1441
+ - type: ndcg_at_1000
1442
+ value: 70.342
1443
+ - type: ndcg_at_3
1444
+ value: 61.29
1445
+ - type: ndcg_at_5
1446
+ value: 63.747
1447
+ - type: precision_at_1
1448
+ value: 76.19200000000001
1449
+ - type: precision_at_10
1450
+ value: 13.571
1451
+ - type: precision_at_100
1452
+ value: 1.6070000000000002
1453
+ - type: precision_at_1000
1454
+ value: 0.179
1455
+ - type: precision_at_3
1456
+ value: 38.663
1457
+ - type: precision_at_5
1458
+ value: 25.136999999999997
1459
+ - type: recall_at_1
1460
+ value: 38.096000000000004
1461
+ - type: recall_at_10
1462
+ value: 67.853
1463
+ - type: recall_at_100
1464
+ value: 80.365
1465
+ - type: recall_at_1000
1466
+ value: 89.629
1467
+ - type: recall_at_3
1468
+ value: 57.995
1469
+ - type: recall_at_5
1470
+ value: 62.843
1471
+ - task:
1472
+ type: Classification
1473
+ dataset:
1474
+ type: mteb/imdb
1475
+ name: MTEB ImdbClassification
1476
+ config: default
1477
+ split: test
1478
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1479
+ metrics:
1480
+ - type: accuracy
1481
+ value: 85.95200000000001
1482
+ - type: ap
1483
+ value: 80.73847277002109
1484
+ - type: f1
1485
+ value: 85.92406135678594
1486
+ - task:
1487
+ type: Retrieval
1488
+ dataset:
1489
+ type: msmarco
1490
+ name: MTEB MSMARCO
1491
+ config: default
1492
+ split: dev
1493
+ revision: None
1494
+ metrics:
1495
+ - type: map_at_1
1496
+ value: 20.916999999999998
1497
+ - type: map_at_10
1498
+ value: 33.23
1499
+ - type: map_at_100
1500
+ value: 34.427
1501
+ - type: map_at_1000
1502
+ value: 34.477000000000004
1503
+ - type: map_at_3
1504
+ value: 29.292
1505
+ - type: map_at_5
1506
+ value: 31.6
1507
+ - type: mrr_at_1
1508
+ value: 21.547
1509
+ - type: mrr_at_10
1510
+ value: 33.839999999999996
1511
+ - type: mrr_at_100
1512
+ value: 34.979
1513
+ - type: mrr_at_1000
1514
+ value: 35.022999999999996
1515
+ - type: mrr_at_3
1516
+ value: 29.988
1517
+ - type: mrr_at_5
1518
+ value: 32.259
1519
+ - type: ndcg_at_1
1520
+ value: 21.519
1521
+ - type: ndcg_at_10
1522
+ value: 40.209
1523
+ - type: ndcg_at_100
1524
+ value: 45.954
1525
+ - type: ndcg_at_1000
1526
+ value: 47.187
1527
+ - type: ndcg_at_3
1528
+ value: 32.227
1529
+ - type: ndcg_at_5
1530
+ value: 36.347
1531
+ - type: precision_at_1
1532
+ value: 21.519
1533
+ - type: precision_at_10
1534
+ value: 6.447
1535
+ - type: precision_at_100
1536
+ value: 0.932
1537
+ - type: precision_at_1000
1538
+ value: 0.104
1539
+ - type: precision_at_3
1540
+ value: 13.877999999999998
1541
+ - type: precision_at_5
1542
+ value: 10.404
1543
+ - type: recall_at_1
1544
+ value: 20.916999999999998
1545
+ - type: recall_at_10
1546
+ value: 61.7
1547
+ - type: recall_at_100
1548
+ value: 88.202
1549
+ - type: recall_at_1000
1550
+ value: 97.588
1551
+ - type: recall_at_3
1552
+ value: 40.044999999999995
1553
+ - type: recall_at_5
1554
+ value: 49.964999999999996
1555
+ - task:
1556
+ type: Classification
1557
+ dataset:
1558
+ type: mteb/mtop_domain
1559
+ name: MTEB MTOPDomainClassification (en)
1560
+ config: en
1561
+ split: test
1562
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1563
+ metrics:
1564
+ - type: accuracy
1565
+ value: 93.02781577747379
1566
+ - type: f1
1567
+ value: 92.83653922768306
1568
+ - task:
1569
+ type: Classification
1570
+ dataset:
1571
+ type: mteb/mtop_intent
1572
+ name: MTEB MTOPIntentClassification (en)
1573
+ config: en
1574
+ split: test
1575
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1576
+ metrics:
1577
+ - type: accuracy
1578
+ value: 72.04286365709075
1579
+ - type: f1
1580
+ value: 53.43867658525793
1581
+ - task:
1582
+ type: Classification
1583
+ dataset:
1584
+ type: mteb/amazon_massive_intent
1585
+ name: MTEB MassiveIntentClassification (en)
1586
+ config: en
1587
+ split: test
1588
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1589
+ metrics:
1590
+ - type: accuracy
1591
+ value: 71.47276395427035
1592
+ - type: f1
1593
+ value: 69.77017399597342
1594
+ - task:
1595
+ type: Classification
1596
+ dataset:
1597
+ type: mteb/amazon_massive_scenario
1598
+ name: MTEB MassiveScenarioClassification (en)
1599
+ config: en
1600
+ split: test
1601
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1602
+ metrics:
1603
+ - type: accuracy
1604
+ value: 76.3819771351715
1605
+ - type: f1
1606
+ value: 76.8484533435409
1607
+ - task:
1608
+ type: Clustering
1609
+ dataset:
1610
+ type: mteb/medrxiv-clustering-p2p
1611
+ name: MTEB MedrxivClusteringP2P
1612
+ config: default
1613
+ split: test
1614
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1615
+ metrics:
1616
+ - type: v_measure
1617
+ value: 33.16515993299593
1618
+ - task:
1619
+ type: Clustering
1620
+ dataset:
1621
+ type: mteb/medrxiv-clustering-s2s
1622
+ name: MTEB MedrxivClusteringS2S
1623
+ config: default
1624
+ split: test
1625
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1626
+ metrics:
1627
+ - type: v_measure
1628
+ value: 31.77145323314774
1629
+ - task:
1630
+ type: Reranking
1631
+ dataset:
1632
+ type: mteb/mind_small
1633
+ name: MTEB MindSmallReranking
1634
+ config: default
1635
+ split: test
1636
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1637
+ metrics:
1638
+ - type: map
1639
+ value: 32.53637706586391
1640
+ - type: mrr
1641
+ value: 33.7312926288863
1642
+ - task:
1643
+ type: Retrieval
1644
+ dataset:
1645
+ type: nfcorpus
1646
+ name: MTEB NFCorpus
1647
+ config: default
1648
+ split: test
1649
+ revision: None
1650
+ metrics:
1651
+ - type: map_at_1
1652
+ value: 7.063999999999999
1653
+ - type: map_at_10
1654
+ value: 15.046999999999999
1655
+ - type: map_at_100
1656
+ value: 19.116
1657
+ - type: map_at_1000
1658
+ value: 20.702
1659
+ - type: map_at_3
1660
+ value: 10.932
1661
+ - type: map_at_5
1662
+ value: 12.751999999999999
1663
+ - type: mrr_at_1
1664
+ value: 50.464
1665
+ - type: mrr_at_10
1666
+ value: 58.189
1667
+ - type: mrr_at_100
1668
+ value: 58.733999999999995
1669
+ - type: mrr_at_1000
1670
+ value: 58.769000000000005
1671
+ - type: mrr_at_3
1672
+ value: 56.24400000000001
1673
+ - type: mrr_at_5
1674
+ value: 57.68299999999999
1675
+ - type: ndcg_at_1
1676
+ value: 48.142
1677
+ - type: ndcg_at_10
1678
+ value: 37.897
1679
+ - type: ndcg_at_100
1680
+ value: 35.264
1681
+ - type: ndcg_at_1000
1682
+ value: 44.033
1683
+ - type: ndcg_at_3
1684
+ value: 42.967
1685
+ - type: ndcg_at_5
1686
+ value: 40.815
1687
+ - type: precision_at_1
1688
+ value: 50.15500000000001
1689
+ - type: precision_at_10
1690
+ value: 28.235
1691
+ - type: precision_at_100
1692
+ value: 8.994
1693
+ - type: precision_at_1000
1694
+ value: 2.218
1695
+ - type: precision_at_3
1696
+ value: 40.041
1697
+ - type: precision_at_5
1698
+ value: 35.046
1699
+ - type: recall_at_1
1700
+ value: 7.063999999999999
1701
+ - type: recall_at_10
1702
+ value: 18.598
1703
+ - type: recall_at_100
1704
+ value: 35.577999999999996
1705
+ - type: recall_at_1000
1706
+ value: 67.43
1707
+ - type: recall_at_3
1708
+ value: 11.562999999999999
1709
+ - type: recall_at_5
1710
+ value: 14.771
1711
+ - task:
1712
+ type: Retrieval
1713
+ dataset:
1714
+ type: nq
1715
+ name: MTEB NQ
1716
+ config: default
1717
+ split: test
1718
+ revision: None
1719
+ metrics:
1720
+ - type: map_at_1
1721
+ value: 29.046
1722
+ - type: map_at_10
1723
+ value: 44.808
1724
+ - type: map_at_100
1725
+ value: 45.898
1726
+ - type: map_at_1000
1727
+ value: 45.927
1728
+ - type: map_at_3
1729
+ value: 40.19
1730
+ - type: map_at_5
1731
+ value: 42.897
1732
+ - type: mrr_at_1
1733
+ value: 32.706
1734
+ - type: mrr_at_10
1735
+ value: 47.275
1736
+ - type: mrr_at_100
1737
+ value: 48.075
1738
+ - type: mrr_at_1000
1739
+ value: 48.095
1740
+ - type: mrr_at_3
1741
+ value: 43.463
1742
+ - type: mrr_at_5
1743
+ value: 45.741
1744
+ - type: ndcg_at_1
1745
+ value: 32.706
1746
+ - type: ndcg_at_10
1747
+ value: 52.835
1748
+ - type: ndcg_at_100
1749
+ value: 57.345
1750
+ - type: ndcg_at_1000
1751
+ value: 57.985
1752
+ - type: ndcg_at_3
1753
+ value: 44.171
1754
+ - type: ndcg_at_5
1755
+ value: 48.661
1756
+ - type: precision_at_1
1757
+ value: 32.706
1758
+ - type: precision_at_10
1759
+ value: 8.895999999999999
1760
+ - type: precision_at_100
1761
+ value: 1.143
1762
+ - type: precision_at_1000
1763
+ value: 0.12
1764
+ - type: precision_at_3
1765
+ value: 20.238999999999997
1766
+ - type: precision_at_5
1767
+ value: 14.728
1768
+ - type: recall_at_1
1769
+ value: 29.046
1770
+ - type: recall_at_10
1771
+ value: 74.831
1772
+ - type: recall_at_100
1773
+ value: 94.192
1774
+ - type: recall_at_1000
1775
+ value: 98.897
1776
+ - type: recall_at_3
1777
+ value: 52.37500000000001
1778
+ - type: recall_at_5
1779
+ value: 62.732
1780
+ - task:
1781
+ type: Retrieval
1782
+ dataset:
1783
+ type: quora
1784
+ name: MTEB QuoraRetrieval
1785
+ config: default
1786
+ split: test
1787
+ revision: None
1788
+ metrics:
1789
+ - type: map_at_1
1790
+ value: 70.38799999999999
1791
+ - type: map_at_10
1792
+ value: 84.315
1793
+ - type: map_at_100
1794
+ value: 84.955
1795
+ - type: map_at_1000
1796
+ value: 84.971
1797
+ - type: map_at_3
1798
+ value: 81.33399999999999
1799
+ - type: map_at_5
1800
+ value: 83.21300000000001
1801
+ - type: mrr_at_1
1802
+ value: 81.03
1803
+ - type: mrr_at_10
1804
+ value: 87.395
1805
+ - type: mrr_at_100
1806
+ value: 87.488
1807
+ - type: mrr_at_1000
1808
+ value: 87.48899999999999
1809
+ - type: mrr_at_3
1810
+ value: 86.41499999999999
1811
+ - type: mrr_at_5
1812
+ value: 87.074
1813
+ - type: ndcg_at_1
1814
+ value: 81.04
1815
+ - type: ndcg_at_10
1816
+ value: 88.151
1817
+ - type: ndcg_at_100
1818
+ value: 89.38199999999999
1819
+ - type: ndcg_at_1000
1820
+ value: 89.479
1821
+ - type: ndcg_at_3
1822
+ value: 85.24000000000001
1823
+ - type: ndcg_at_5
1824
+ value: 86.856
1825
+ - type: precision_at_1
1826
+ value: 81.04
1827
+ - type: precision_at_10
1828
+ value: 13.372
1829
+ - type: precision_at_100
1830
+ value: 1.526
1831
+ - type: precision_at_1000
1832
+ value: 0.157
1833
+ - type: precision_at_3
1834
+ value: 37.217
1835
+ - type: precision_at_5
1836
+ value: 24.502
1837
+ - type: recall_at_1
1838
+ value: 70.38799999999999
1839
+ - type: recall_at_10
1840
+ value: 95.452
1841
+ - type: recall_at_100
1842
+ value: 99.59700000000001
1843
+ - type: recall_at_1000
1844
+ value: 99.988
1845
+ - type: recall_at_3
1846
+ value: 87.11
1847
+ - type: recall_at_5
1848
+ value: 91.662
1849
+ - task:
1850
+ type: Clustering
1851
+ dataset:
1852
+ type: mteb/reddit-clustering
1853
+ name: MTEB RedditClustering
1854
+ config: default
1855
+ split: test
1856
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1857
+ metrics:
1858
+ - type: v_measure
1859
+ value: 59.334991029213235
1860
+ - task:
1861
+ type: Clustering
1862
+ dataset:
1863
+ type: mteb/reddit-clustering-p2p
1864
+ name: MTEB RedditClusteringP2P
1865
+ config: default
1866
+ split: test
1867
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1868
+ metrics:
1869
+ - type: v_measure
1870
+ value: 62.586500854616666
1871
+ - task:
1872
+ type: Retrieval
1873
+ dataset:
1874
+ type: scidocs
1875
+ name: MTEB SCIDOCS
1876
+ config: default
1877
+ split: test
1878
+ revision: None
1879
+ metrics:
1880
+ - type: map_at_1
1881
+ value: 5.153
1882
+ - type: map_at_10
1883
+ value: 14.277000000000001
1884
+ - type: map_at_100
1885
+ value: 16.922
1886
+ - type: map_at_1000
1887
+ value: 17.302999999999997
1888
+ - type: map_at_3
1889
+ value: 9.961
1890
+ - type: map_at_5
1891
+ value: 12.257
1892
+ - type: mrr_at_1
1893
+ value: 25.4
1894
+ - type: mrr_at_10
1895
+ value: 37.458000000000006
1896
+ - type: mrr_at_100
1897
+ value: 38.681
1898
+ - type: mrr_at_1000
1899
+ value: 38.722
1900
+ - type: mrr_at_3
1901
+ value: 34.1
1902
+ - type: mrr_at_5
1903
+ value: 36.17
1904
+ - type: ndcg_at_1
1905
+ value: 25.4
1906
+ - type: ndcg_at_10
1907
+ value: 23.132
1908
+ - type: ndcg_at_100
1909
+ value: 32.908
1910
+ - type: ndcg_at_1000
1911
+ value: 38.754
1912
+ - type: ndcg_at_3
1913
+ value: 21.82
1914
+ - type: ndcg_at_5
1915
+ value: 19.353
1916
+ - type: precision_at_1
1917
+ value: 25.4
1918
+ - type: precision_at_10
1919
+ value: 12.1
1920
+ - type: precision_at_100
1921
+ value: 2.628
1922
+ - type: precision_at_1000
1923
+ value: 0.402
1924
+ - type: precision_at_3
1925
+ value: 20.732999999999997
1926
+ - type: precision_at_5
1927
+ value: 17.34
1928
+ - type: recall_at_1
1929
+ value: 5.153
1930
+ - type: recall_at_10
1931
+ value: 24.54
1932
+ - type: recall_at_100
1933
+ value: 53.293
1934
+ - type: recall_at_1000
1935
+ value: 81.57
1936
+ - type: recall_at_3
1937
+ value: 12.613
1938
+ - type: recall_at_5
1939
+ value: 17.577
1940
+ - task:
1941
+ type: STS
1942
+ dataset:
1943
+ type: mteb/sickr-sts
1944
+ name: MTEB SICK-R
1945
+ config: default
1946
+ split: test
1947
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1948
+ metrics:
1949
+ - type: cos_sim_pearson
1950
+ value: 84.86284404925333
1951
+ - type: cos_sim_spearman
1952
+ value: 78.85870555294795
1953
+ - type: euclidean_pearson
1954
+ value: 82.20105295276093
1955
+ - type: euclidean_spearman
1956
+ value: 78.92125617009592
1957
+ - type: manhattan_pearson
1958
+ value: 82.15840025289069
1959
+ - type: manhattan_spearman
1960
+ value: 78.85955732900803
1961
+ - task:
1962
+ type: STS
1963
+ dataset:
1964
+ type: mteb/sts12-sts
1965
+ name: MTEB STS12
1966
+ config: default
1967
+ split: test
1968
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1969
+ metrics:
1970
+ - type: cos_sim_pearson
1971
+ value: 84.98747423389027
1972
+ - type: cos_sim_spearman
1973
+ value: 75.71298531799367
1974
+ - type: euclidean_pearson
1975
+ value: 81.59709559192291
1976
+ - type: euclidean_spearman
1977
+ value: 75.40622749225653
1978
+ - type: manhattan_pearson
1979
+ value: 81.55553547608804
1980
+ - type: manhattan_spearman
1981
+ value: 75.39380235424899
1982
+ - task:
1983
+ type: STS
1984
+ dataset:
1985
+ type: mteb/sts13-sts
1986
+ name: MTEB STS13
1987
+ config: default
1988
+ split: test
1989
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1990
+ metrics:
1991
+ - type: cos_sim_pearson
1992
+ value: 83.76861330695503
1993
+ - type: cos_sim_spearman
1994
+ value: 85.72991921531624
1995
+ - type: euclidean_pearson
1996
+ value: 84.84504307397536
1997
+ - type: euclidean_spearman
1998
+ value: 86.02679162824732
1999
+ - type: manhattan_pearson
2000
+ value: 84.79969439220142
2001
+ - type: manhattan_spearman
2002
+ value: 85.99238837291625
2003
+ - task:
2004
+ type: STS
2005
+ dataset:
2006
+ type: mteb/sts14-sts
2007
+ name: MTEB STS14
2008
+ config: default
2009
+ split: test
2010
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2011
+ metrics:
2012
+ - type: cos_sim_pearson
2013
+ value: 83.31929747511796
2014
+ - type: cos_sim_spearman
2015
+ value: 81.50806522502528
2016
+ - type: euclidean_pearson
2017
+ value: 82.93936686512777
2018
+ - type: euclidean_spearman
2019
+ value: 81.54403447993224
2020
+ - type: manhattan_pearson
2021
+ value: 82.89696981900828
2022
+ - type: manhattan_spearman
2023
+ value: 81.52817825470865
2024
+ - task:
2025
+ type: STS
2026
+ dataset:
2027
+ type: mteb/sts15-sts
2028
+ name: MTEB STS15
2029
+ config: default
2030
+ split: test
2031
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2032
+ metrics:
2033
+ - type: cos_sim_pearson
2034
+ value: 87.14413295332908
2035
+ - type: cos_sim_spearman
2036
+ value: 88.81032027008195
2037
+ - type: euclidean_pearson
2038
+ value: 88.19205563407645
2039
+ - type: euclidean_spearman
2040
+ value: 88.89738339479216
2041
+ - type: manhattan_pearson
2042
+ value: 88.11075942004189
2043
+ - type: manhattan_spearman
2044
+ value: 88.8297061675564
2045
+ - task:
2046
+ type: STS
2047
+ dataset:
2048
+ type: mteb/sts16-sts
2049
+ name: MTEB STS16
2050
+ config: default
2051
+ split: test
2052
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2053
+ metrics:
2054
+ - type: cos_sim_pearson
2055
+ value: 82.15980075557017
2056
+ - type: cos_sim_spearman
2057
+ value: 83.81896308594801
2058
+ - type: euclidean_pearson
2059
+ value: 83.11195254311338
2060
+ - type: euclidean_spearman
2061
+ value: 84.10479481755407
2062
+ - type: manhattan_pearson
2063
+ value: 83.13915225100556
2064
+ - type: manhattan_spearman
2065
+ value: 84.09895591027859
2066
+ - task:
2067
+ type: STS
2068
+ dataset:
2069
+ type: mteb/sts17-crosslingual-sts
2070
+ name: MTEB STS17 (en-en)
2071
+ config: en-en
2072
+ split: test
2073
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2074
+ metrics:
2075
+ - type: cos_sim_pearson
2076
+ value: 87.93669480147919
2077
+ - type: cos_sim_spearman
2078
+ value: 87.89861394614361
2079
+ - type: euclidean_pearson
2080
+ value: 88.37316413202339
2081
+ - type: euclidean_spearman
2082
+ value: 88.18033817842569
2083
+ - type: manhattan_pearson
2084
+ value: 88.39427578879469
2085
+ - type: manhattan_spearman
2086
+ value: 88.09185009236847
2087
+ - task:
2088
+ type: STS
2089
+ dataset:
2090
+ type: mteb/sts22-crosslingual-sts
2091
+ name: MTEB STS22 (en)
2092
+ config: en
2093
+ split: test
2094
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2095
+ metrics:
2096
+ - type: cos_sim_pearson
2097
+ value: 66.62215083348255
2098
+ - type: cos_sim_spearman
2099
+ value: 67.33243665716736
2100
+ - type: euclidean_pearson
2101
+ value: 67.60871701996284
2102
+ - type: euclidean_spearman
2103
+ value: 66.75929225238659
2104
+ - type: manhattan_pearson
2105
+ value: 67.63907838970992
2106
+ - type: manhattan_spearman
2107
+ value: 66.79313656754846
2108
+ - task:
2109
+ type: STS
2110
+ dataset:
2111
+ type: mteb/stsbenchmark-sts
2112
+ name: MTEB STSBenchmark
2113
+ config: default
2114
+ split: test
2115
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2116
+ metrics:
2117
+ - type: cos_sim_pearson
2118
+ value: 84.65549191934764
2119
+ - type: cos_sim_spearman
2120
+ value: 85.73266847750143
2121
+ - type: euclidean_pearson
2122
+ value: 85.75609932254318
2123
+ - type: euclidean_spearman
2124
+ value: 85.9452287759371
2125
+ - type: manhattan_pearson
2126
+ value: 85.69717413063573
2127
+ - type: manhattan_spearman
2128
+ value: 85.86546318377046
2129
+ - task:
2130
+ type: Reranking
2131
+ dataset:
2132
+ type: mteb/scidocs-reranking
2133
+ name: MTEB SciDocsRR
2134
+ config: default
2135
+ split: test
2136
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2137
+ metrics:
2138
+ - type: map
2139
+ value: 87.08164129085783
2140
+ - type: mrr
2141
+ value: 96.2877273416489
2142
+ - task:
2143
+ type: Retrieval
2144
+ dataset:
2145
+ type: scifact
2146
+ name: MTEB SciFact
2147
+ config: default
2148
+ split: test
2149
+ revision: None
2150
+ metrics:
2151
+ - type: map_at_1
2152
+ value: 62.09400000000001
2153
+ - type: map_at_10
2154
+ value: 71.712
2155
+ - type: map_at_100
2156
+ value: 72.128
2157
+ - type: map_at_1000
2158
+ value: 72.14399999999999
2159
+ - type: map_at_3
2160
+ value: 68.93
2161
+ - type: map_at_5
2162
+ value: 70.694
2163
+ - type: mrr_at_1
2164
+ value: 65.0
2165
+ - type: mrr_at_10
2166
+ value: 72.572
2167
+ - type: mrr_at_100
2168
+ value: 72.842
2169
+ - type: mrr_at_1000
2170
+ value: 72.856
2171
+ - type: mrr_at_3
2172
+ value: 70.44399999999999
2173
+ - type: mrr_at_5
2174
+ value: 71.744
2175
+ - type: ndcg_at_1
2176
+ value: 65.0
2177
+ - type: ndcg_at_10
2178
+ value: 76.178
2179
+ - type: ndcg_at_100
2180
+ value: 77.887
2181
+ - type: ndcg_at_1000
2182
+ value: 78.227
2183
+ - type: ndcg_at_3
2184
+ value: 71.367
2185
+ - type: ndcg_at_5
2186
+ value: 73.938
2187
+ - type: precision_at_1
2188
+ value: 65.0
2189
+ - type: precision_at_10
2190
+ value: 10.033
2191
+ - type: precision_at_100
2192
+ value: 1.097
2193
+ - type: precision_at_1000
2194
+ value: 0.11199999999999999
2195
+ - type: precision_at_3
2196
+ value: 27.667
2197
+ - type: precision_at_5
2198
+ value: 18.4
2199
+ - type: recall_at_1
2200
+ value: 62.09400000000001
2201
+ - type: recall_at_10
2202
+ value: 89.022
2203
+ - type: recall_at_100
2204
+ value: 96.833
2205
+ - type: recall_at_1000
2206
+ value: 99.333
2207
+ - type: recall_at_3
2208
+ value: 75.922
2209
+ - type: recall_at_5
2210
+ value: 82.428
2211
+ - task:
2212
+ type: PairClassification
2213
+ dataset:
2214
+ type: mteb/sprintduplicatequestions-pairclassification
2215
+ name: MTEB SprintDuplicateQuestions
2216
+ config: default
2217
+ split: test
2218
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2219
+ metrics:
2220
+ - type: cos_sim_accuracy
2221
+ value: 99.82178217821782
2222
+ - type: cos_sim_ap
2223
+ value: 95.71282508220798
2224
+ - type: cos_sim_f1
2225
+ value: 90.73120494335737
2226
+ - type: cos_sim_precision
2227
+ value: 93.52441613588111
2228
+ - type: cos_sim_recall
2229
+ value: 88.1
2230
+ - type: dot_accuracy
2231
+ value: 99.73960396039604
2232
+ - type: dot_ap
2233
+ value: 92.98534606529098
2234
+ - type: dot_f1
2235
+ value: 86.83024536805209
2236
+ - type: dot_precision
2237
+ value: 86.96088264794383
2238
+ - type: dot_recall
2239
+ value: 86.7
2240
+ - type: euclidean_accuracy
2241
+ value: 99.82475247524752
2242
+ - type: euclidean_ap
2243
+ value: 95.72927039014849
2244
+ - type: euclidean_f1
2245
+ value: 90.89974293059126
2246
+ - type: euclidean_precision
2247
+ value: 93.54497354497354
2248
+ - type: euclidean_recall
2249
+ value: 88.4
2250
+ - type: manhattan_accuracy
2251
+ value: 99.82574257425742
2252
+ - type: manhattan_ap
2253
+ value: 95.72142177390405
2254
+ - type: manhattan_f1
2255
+ value: 91.00152516522625
2256
+ - type: manhattan_precision
2257
+ value: 92.55429162357808
2258
+ - type: manhattan_recall
2259
+ value: 89.5
2260
+ - type: max_accuracy
2261
+ value: 99.82574257425742
2262
+ - type: max_ap
2263
+ value: 95.72927039014849
2264
+ - type: max_f1
2265
+ value: 91.00152516522625
2266
+ - task:
2267
+ type: Clustering
2268
+ dataset:
2269
+ type: mteb/stackexchange-clustering
2270
+ name: MTEB StackExchangeClustering
2271
+ config: default
2272
+ split: test
2273
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2274
+ metrics:
2275
+ - type: v_measure
2276
+ value: 66.63957663468679
2277
+ - task:
2278
+ type: Clustering
2279
+ dataset:
2280
+ type: mteb/stackexchange-clustering-p2p
2281
+ name: MTEB StackExchangeClusteringP2P
2282
+ config: default
2283
+ split: test
2284
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2285
+ metrics:
2286
+ - type: v_measure
2287
+ value: 36.003307257923964
2288
+ - task:
2289
+ type: Reranking
2290
+ dataset:
2291
+ type: mteb/stackoverflowdupquestions-reranking
2292
+ name: MTEB StackOverflowDupQuestions
2293
+ config: default
2294
+ split: test
2295
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2296
+ metrics:
2297
+ - type: map
2298
+ value: 53.005825525863905
2299
+ - type: mrr
2300
+ value: 53.854683919022165
2301
+ - task:
2302
+ type: Summarization
2303
+ dataset:
2304
+ type: mteb/summeval
2305
+ name: MTEB SummEval
2306
+ config: default
2307
+ split: test
2308
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2309
+ metrics:
2310
+ - type: cos_sim_pearson
2311
+ value: 30.503611569974098
2312
+ - type: cos_sim_spearman
2313
+ value: 31.17155564248449
2314
+ - type: dot_pearson
2315
+ value: 26.740428413981306
2316
+ - type: dot_spearman
2317
+ value: 26.55727635469746
2318
+ - task:
2319
+ type: Retrieval
2320
+ dataset:
2321
+ type: trec-covid
2322
+ name: MTEB TRECCOVID
2323
+ config: default
2324
+ split: test
2325
+ revision: None
2326
+ metrics:
2327
+ - type: map_at_1
2328
+ value: 0.23600000000000002
2329
+ - type: map_at_10
2330
+ value: 1.7670000000000001
2331
+ - type: map_at_100
2332
+ value: 10.208
2333
+ - type: map_at_1000
2334
+ value: 25.997999999999998
2335
+ - type: map_at_3
2336
+ value: 0.605
2337
+ - type: map_at_5
2338
+ value: 0.9560000000000001
2339
+ - type: mrr_at_1
2340
+ value: 84.0
2341
+ - type: mrr_at_10
2342
+ value: 90.167
2343
+ - type: mrr_at_100
2344
+ value: 90.167
2345
+ - type: mrr_at_1000
2346
+ value: 90.167
2347
+ - type: mrr_at_3
2348
+ value: 89.667
2349
+ - type: mrr_at_5
2350
+ value: 90.167
2351
+ - type: ndcg_at_1
2352
+ value: 77.0
2353
+ - type: ndcg_at_10
2354
+ value: 68.783
2355
+ - type: ndcg_at_100
2356
+ value: 54.196
2357
+ - type: ndcg_at_1000
2358
+ value: 52.077
2359
+ - type: ndcg_at_3
2360
+ value: 71.642
2361
+ - type: ndcg_at_5
2362
+ value: 70.45700000000001
2363
+ - type: precision_at_1
2364
+ value: 84.0
2365
+ - type: precision_at_10
2366
+ value: 73.0
2367
+ - type: precision_at_100
2368
+ value: 55.48
2369
+ - type: precision_at_1000
2370
+ value: 23.102
2371
+ - type: precision_at_3
2372
+ value: 76.0
2373
+ - type: precision_at_5
2374
+ value: 74.8
2375
+ - type: recall_at_1
2376
+ value: 0.23600000000000002
2377
+ - type: recall_at_10
2378
+ value: 1.9869999999999999
2379
+ - type: recall_at_100
2380
+ value: 13.749
2381
+ - type: recall_at_1000
2382
+ value: 50.157
2383
+ - type: recall_at_3
2384
+ value: 0.633
2385
+ - type: recall_at_5
2386
+ value: 1.0290000000000001
2387
+ - task:
2388
+ type: Retrieval
2389
+ dataset:
2390
+ type: webis-touche2020
2391
+ name: MTEB Touche2020
2392
+ config: default
2393
+ split: test
2394
+ revision: None
2395
+ metrics:
2396
+ - type: map_at_1
2397
+ value: 1.437
2398
+ - type: map_at_10
2399
+ value: 8.791
2400
+ - type: map_at_100
2401
+ value: 15.001999999999999
2402
+ - type: map_at_1000
2403
+ value: 16.549
2404
+ - type: map_at_3
2405
+ value: 3.8080000000000003
2406
+ - type: map_at_5
2407
+ value: 5.632000000000001
2408
+ - type: mrr_at_1
2409
+ value: 20.408
2410
+ - type: mrr_at_10
2411
+ value: 36.96
2412
+ - type: mrr_at_100
2413
+ value: 37.912
2414
+ - type: mrr_at_1000
2415
+ value: 37.912
2416
+ - type: mrr_at_3
2417
+ value: 29.592000000000002
2418
+ - type: mrr_at_5
2419
+ value: 34.489999999999995
2420
+ - type: ndcg_at_1
2421
+ value: 19.387999999999998
2422
+ - type: ndcg_at_10
2423
+ value: 22.554
2424
+ - type: ndcg_at_100
2425
+ value: 35.197
2426
+ - type: ndcg_at_1000
2427
+ value: 46.58
2428
+ - type: ndcg_at_3
2429
+ value: 20.285
2430
+ - type: ndcg_at_5
2431
+ value: 21.924
2432
+ - type: precision_at_1
2433
+ value: 20.408
2434
+ - type: precision_at_10
2435
+ value: 21.837
2436
+ - type: precision_at_100
2437
+ value: 7.754999999999999
2438
+ - type: precision_at_1000
2439
+ value: 1.537
2440
+ - type: precision_at_3
2441
+ value: 21.769
2442
+ - type: precision_at_5
2443
+ value: 23.673
2444
+ - type: recall_at_1
2445
+ value: 1.437
2446
+ - type: recall_at_10
2447
+ value: 16.314999999999998
2448
+ - type: recall_at_100
2449
+ value: 47.635
2450
+ - type: recall_at_1000
2451
+ value: 82.963
2452
+ - type: recall_at_3
2453
+ value: 4.955
2454
+ - type: recall_at_5
2455
+ value: 8.805
2456
+ - task:
2457
+ type: Classification
2458
+ dataset:
2459
+ type: mteb/toxic_conversations_50k
2460
+ name: MTEB ToxicConversationsClassification
2461
+ config: default
2462
+ split: test
2463
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2464
+ metrics:
2465
+ - type: accuracy
2466
+ value: 71.6128
2467
+ - type: ap
2468
+ value: 14.279639861175664
2469
+ - type: f1
2470
+ value: 54.922292491204274
2471
+ - task:
2472
+ type: Classification
2473
+ dataset:
2474
+ type: mteb/tweet_sentiment_extraction
2475
+ name: MTEB TweetSentimentExtractionClassification
2476
+ config: default
2477
+ split: test
2478
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2479
+ metrics:
2480
+ - type: accuracy
2481
+ value: 57.01188455008489
2482
+ - type: f1
2483
+ value: 57.377953019225515
2484
+ - task:
2485
+ type: Clustering
2486
+ dataset:
2487
+ type: mteb/twentynewsgroups-clustering
2488
+ name: MTEB TwentyNewsgroupsClustering
2489
+ config: default
2490
+ split: test
2491
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2492
+ metrics:
2493
+ - type: v_measure
2494
+ value: 52.306769136544254
2495
+ - task:
2496
+ type: PairClassification
2497
+ dataset:
2498
+ type: mteb/twittersemeval2015-pairclassification
2499
+ name: MTEB TwitterSemEval2015
2500
+ config: default
2501
+ split: test
2502
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2503
+ metrics:
2504
+ - type: cos_sim_accuracy
2505
+ value: 85.64701674912082
2506
+ - type: cos_sim_ap
2507
+ value: 72.46600945328552
2508
+ - type: cos_sim_f1
2509
+ value: 67.96572367648784
2510
+ - type: cos_sim_precision
2511
+ value: 61.21801649397336
2512
+ - type: cos_sim_recall
2513
+ value: 76.38522427440633
2514
+ - type: dot_accuracy
2515
+ value: 82.33295583238957
2516
+ - type: dot_ap
2517
+ value: 62.54843443071716
2518
+ - type: dot_f1
2519
+ value: 60.38378562507096
2520
+ - type: dot_precision
2521
+ value: 52.99980067769583
2522
+ - type: dot_recall
2523
+ value: 70.15831134564644
2524
+ - type: euclidean_accuracy
2525
+ value: 85.7423854085951
2526
+ - type: euclidean_ap
2527
+ value: 72.76873850945174
2528
+ - type: euclidean_f1
2529
+ value: 68.23556960543262
2530
+ - type: euclidean_precision
2531
+ value: 61.3344559040202
2532
+ - type: euclidean_recall
2533
+ value: 76.88654353562005
2534
+ - type: manhattan_accuracy
2535
+ value: 85.74834594981225
2536
+ - type: manhattan_ap
2537
+ value: 72.66825372446462
2538
+ - type: manhattan_f1
2539
+ value: 68.21539194662853
2540
+ - type: manhattan_precision
2541
+ value: 62.185056472632496
2542
+ - type: manhattan_recall
2543
+ value: 75.54089709762533
2544
+ - type: max_accuracy
2545
+ value: 85.74834594981225
2546
+ - type: max_ap
2547
+ value: 72.76873850945174
2548
+ - type: max_f1
2549
+ value: 68.23556960543262
2550
+ - task:
2551
+ type: PairClassification
2552
+ dataset:
2553
+ type: mteb/twitterurlcorpus-pairclassification
2554
+ name: MTEB TwitterURLCorpus
2555
+ config: default
2556
+ split: test
2557
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2558
+ metrics:
2559
+ - type: cos_sim_accuracy
2560
+ value: 88.73171110334924
2561
+ - type: cos_sim_ap
2562
+ value: 85.51855542063649
2563
+ - type: cos_sim_f1
2564
+ value: 77.95706775700934
2565
+ - type: cos_sim_precision
2566
+ value: 74.12524298805887
2567
+ - type: cos_sim_recall
2568
+ value: 82.20665229442562
2569
+ - type: dot_accuracy
2570
+ value: 86.94842240074514
2571
+ - type: dot_ap
2572
+ value: 80.90995345771762
2573
+ - type: dot_f1
2574
+ value: 74.20765027322403
2575
+ - type: dot_precision
2576
+ value: 70.42594385285575
2577
+ - type: dot_recall
2578
+ value: 78.41854019094548
2579
+ - type: euclidean_accuracy
2580
+ value: 88.73753250281368
2581
+ - type: euclidean_ap
2582
+ value: 85.54712254033734
2583
+ - type: euclidean_f1
2584
+ value: 78.07565728654365
2585
+ - type: euclidean_precision
2586
+ value: 75.1120597652081
2587
+ - type: euclidean_recall
2588
+ value: 81.282722513089
2589
+ - type: manhattan_accuracy
2590
+ value: 88.72588970388482
2591
+ - type: manhattan_ap
2592
+ value: 85.52118291594071
2593
+ - type: manhattan_f1
2594
+ value: 78.04428724070593
2595
+ - type: manhattan_precision
2596
+ value: 74.83219105490002
2597
+ - type: manhattan_recall
2598
+ value: 81.54450261780106
2599
+ - type: max_accuracy
2600
+ value: 88.73753250281368
2601
+ - type: max_ap
2602
+ value: 85.54712254033734
2603
+ - type: max_f1
2604
+ value: 78.07565728654365
2605
+ language:
2606
+ - en
2607
+ license: mit
2608
+ ---
2609
+ # # Fast-Inference with Ctranslate2
2610
+ Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
2611
+
2612
+ quantized version of [thenlper/gte-base](https://huggingface.co/thenlper/gte-base)
2613
+ ```bash
2614
+ pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1
2615
+ ```
2616
+
2617
+ ```python
2618
+ # from transformers import AutoTokenizer
2619
+ model_name = "michaelfeil/ct2fast-gte-base"
2620
+ model_name_orig="thenlper/gte-base"
2621
+
2622
+ from hf_hub_ctranslate2 import EncoderCT2fromHfHub
2623
+ model = EncoderCT2fromHfHub(
2624
+ # load in int8 on CUDA
2625
+ model_name_or_path=model_name,
2626
+ device="cuda",
2627
+ compute_type="int8_float16"
2628
+ )
2629
+ outputs = model.generate(
2630
+ text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
2631
+ max_length=64,
2632
+ ) # perform downstream tasks on outputs
2633
+ outputs["pooler_output"]
2634
+ outputs["last_hidden_state"]
2635
+ outputs["attention_mask"]
2636
+
2637
+ # alternative, use SentenceTransformer Mix-In
2638
+ # for end-to-end Sentence embeddings generation
2639
+ # (not pulling from this CT2fast-HF repo)
2640
+
2641
+ from hf_hub_ctranslate2 import CT2SentenceTransformer
2642
+ model = CT2SentenceTransformer(
2643
+ model_name_orig, compute_type="int8_float16", device="cuda"
2644
+ )
2645
+ embeddings = model.encode(
2646
+ ["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
2647
+ batch_size=32,
2648
+ convert_to_numpy=True,
2649
+ normalize_embeddings=True,
2650
+ )
2651
+ print(embeddings.shape, embeddings)
2652
+ scores = (embeddings @ embeddings.T) * 100
2653
+
2654
+ # Hint: you can also host this code via REST API and
2655
+ # via github.com/michaelfeil/infinity
2656
+
2657
+
2658
+ ```
2659
+
2660
+ Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2)
2661
+ and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2)
2662
+ - `compute_type=int8_float16` for `device="cuda"`
2663
+ - `compute_type=int8` for `device="cpu"`
2664
+
2665
+ Converted on 2023-10-13 using
2666
+ ```
2667
+ LLama-2 -> removed <pad> token.
2668
+ ```
2669
+
2670
+ # Licence and other remarks:
2671
+ This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
2672
+
2673
+ # Original description
2674
+
2675
+
2676
+ # gte-base
2677
+
2678
+ General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
2679
+
2680
+ The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
2681
+
2682
+ ## Metrics
2683
+
2684
+ We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
2685
+
2686
+
2687
+
2688
+ | Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
2689
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2690
+ | [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
2691
+ | [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
2692
+ | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
2693
+ | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
2694
+ | [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
2695
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
2696
+ | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
2697
+ | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
2698
+ | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
2699
+ | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
2700
+ | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
2701
+ | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
2702
+ | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
2703
+ | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
2704
+
2705
+
2706
+ ## Usage
2707
+
2708
+ Code example
2709
+
2710
+ ```python
2711
+ import torch.nn.functional as F
2712
+ from torch import Tensor
2713
+ from transformers import AutoTokenizer, AutoModel
2714
+
2715
+ def average_pool(last_hidden_states: Tensor,
2716
+ attention_mask: Tensor) -> Tensor:
2717
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
2718
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
2719
+
2720
+ input_texts = [
2721
+ "what is the capital of China?",
2722
+ "how to implement quick sort in python?",
2723
+ "Beijing",
2724
+ "sorting algorithms"
2725
+ ]
2726
+
2727
+ tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-base")
2728
+ model = AutoModel.from_pretrained("thenlper/gte-base")
2729
+
2730
+ # Tokenize the input texts
2731
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
2732
+
2733
+ outputs = model(**batch_dict)
2734
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
2735
+
2736
+ # (Optionally) normalize embeddings
2737
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2738
+ scores = (embeddings[:1] @ embeddings[1:].T) * 100
2739
+ print(scores.tolist())
2740
+ ```
2741
+
2742
+ Use with sentence-transformers:
2743
+ ```python
2744
+ from sentence_transformers import SentenceTransformer
2745
+ from sentence_transformers.util import cos_sim
2746
+
2747
+ sentences = ['That is a happy person', 'That is a very happy person']
2748
+
2749
+ model = SentenceTransformer('thenlper/gte-base')
2750
+ embeddings = model.encode(sentences)
2751
+ print(cos_sim(embeddings[0], embeddings[1]))
2752
+ ```
2753
+
2754
+ ### Limitation
2755
+
2756
+ This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
2757
+
2758
+ ### Citation
2759
+
2760
+ If you find our paper or models helpful, please consider citing them as follows:
2761
+
2762
+ ```
2763
+ @misc{li2023general,
2764
+ title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
2765
+ author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
2766
+ year={2023},
2767
+ eprint={2308.03281},
2768
+ archivePrefix={arXiv},
2769
+ primaryClass={cs.CL}
2770
+ }
2771
+ ```
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.28.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522,
25
+ "bos_token": "<s>",
26
+ "eos_token": "</s>",
27
+ "layer_norm_epsilon": 1e-12,
28
+ "unk_token": "[UNK]"
29
+ }
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d475a8c53feeede0a2b3b5f2f23753f2e51e7e30bd1a9b38cc646e12ed5082d7
3
+ size 218972844
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 512,
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "strip_accents": null,
10
+ "tokenize_chinese_chars": true,
11
+ "tokenizer_class": "BertTokenizer",
12
+ "unk_token": "[UNK]"
13
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
vocabulary.txt ADDED
The diff for this file is too large to render. See raw diff