File size: 2,809 Bytes
0e2eab3
 
4903b57
 
 
 
 
5090faf
4903b57
 
 
 
 
 
0e2eab3
5090faf
4903b57
 
 
 
 
291c810
4903b57
3a6c298
4903b57
 
 
 
 
 
 
 
 
 
 
 
46c2bbb
4903b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f06b879
4903b57
 
 
 
 
42e0d81
 
 
 
 
 
 
 
4903b57
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: apache-2.0
tags:
- image-captioning
languages:
- en
datasets:
- michelecafagna26/hl
language:
- en
metrics:
- sacrebleu
- rouge
library_name: transformers
---
## ClipCap fine-tuned for Action Image Captioning

[ClipCap](https://arxiv.org/abs/2111.09734) base trained on the [HL Dataset](https://huggingface.co/datasets/michelecafagna26/hl) for **high-level action descriptions generation**

## Model fine-tuning 🏋️‍

We fine-tune LM + Mapping Network starting from the model pretrained on COCO 

- Trained for 10 epochs
- lr:  5e−5
- Adam optimizer
- half-precision (fp16)

## Test set metrics 🧾

    | Cider   | SacreBLEU  | Rouge-L|
    |---------|------------|--------|
    | 176.54  |   27.37    |  39.15 |

## Demo

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Rw9_oNNfP2QsIpekmJhRHAXv_6MX-0ur?usp=sharing)

## Installation

```bash
pip install git+https://github.com/michelecafagna26/CLIPCap.git
```

## Download the model

```bash
git lfs install # if not installed
git clone https://huggingface.co/michelecafagna26/clipcap-base-captioning-ft-hl-actions
```

## Model in Action 🚀


```python
from clipcap import ClipCaptionModel
from transformers import (
    GPT2Tokenizer,
    GPT2LMHeadModel,
)
import torch
import clip
import requests
from PIL import Image

model_path = "clipcap-base-captioning-ft-hl-actions/pytorch_model.pt" # change accordingly

# load clip
device = "cuda" if torch.cuda.is_available() else "cpu"
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
prefix_length = 10

# load ClipCap
model = ClipCaptionModel(prefix_length, tokenizer=tokenizer)
model.from_pretrained(model_path)
model = model.eval()
model = model.to(device)

# load the image
img_url = 'https://datasets-server.huggingface.co/assets/michelecafagna26/hl/--/default/train/0/image/image.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')


# extract the prefix
image = preprocess(raw_image).unsqueeze(0).to(device)
with torch.no_grad():
    prefix = clip_model.encode_image(image).to(
        device, dtype=torch.float32
    )
    prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)

# generate the caption   
model.generate_beam(embed=prefix_embed)[0]


# >> "she is posing for a photo."
```

## BibTex and citation info

```BibTeX
@inproceedings{cafagna2023hl,
  title={{HL} {D}ataset: {V}isually-grounded {D}escription of {S}cenes, {A}ctions and
{R}ationales},
  author={Cafagna, Michele and van Deemter, Kees and Gatt, Albert},
  booktitle={Proceedings of the 16th International Natural Language Generation Conference (INLG'23)},
address = {Prague, Czech Republic},
  year={2023}
}
```