--- license: apache-2.0 datasets: - michelecafagna26/hl language: - en metrics: - sacrebleu - rouge - meteor - spice - cider library_name: pytorch tags: - pytorch - image-to-text --- # Model Card: VinVL for Captioning ๐Ÿ–ผ๏ธ [Microsoft's VinVL](https://github.com/microsoft/Oscar) base fine-tuned on [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) for **action description generation** downstream task. # Model fine-tuning ๐Ÿ‹๏ธโ€ The model has been finetuned for 10 epochs on the action captions of the [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) (available on ๐Ÿค— HUB: [michelecafagna26/hl](https://huggingface.co/datasets/michelecafagna26/hl)) # Test set metrics ๐Ÿ“ˆ Obtained with beam size 5 and max length 20 | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | METEOR | ROUGE-L | CIDEr | SPICE | |--------|--------|--------|--------|--------|---------|-------|-------| | 0.74 | 0.62 | 0.50 | 0.40 | 0.31 | 0.65 | 1.73 | 0.21 | # Usage and Installation: More info about how to install and use this model can be found here: [michelecafagna26/VinVL ](https://github.com/michelecafagna26/VinVL) # Feature extraction โ›๏ธ This model has a separate Visualbackbone used to extract features. More info about: - the model: [michelecafagna26/vinvl_vg_x152c4](https://huggingface.co/michelecafagna26/vinvl_vg_x152c4) - the usage: [michelecafagna26/vinvl-visualbackbone](https://github.com/michelecafagna26/vinvl-visualbackbone) # Quick start: ๐Ÿš€ ```python from transformers.pytorch_transformers import BertConfig, BertTokenizer from oscar.modeling.modeling_bert import BertForImageCaptioning from oscar.wrappers import OscarTensorizer ckpt = "path/to/the/checkpoint" device = "cuda" if torch.cuda.is_available() else "cpu" # original code config = BertConfig.from_pretrained(ckpt) tokenizer = BertTokenizer.from_pretrained(ckpt) model = BertForImageCaptioning.from_pretrained(ckpt, config=config).to(device) # This takes care of the preprocessing tensorizer = OscarTensorizer(tokenizer=tokenizer, device=device) # numpy-arrays with shape (1, num_boxes, feat_size) # feat_size is 2054 by default in VinVL visual_features = torch.from_numpy(feat_obj).to(device).unsqueeze(0) # labels are usually extracted by the features extractor labels = [['boat', 'boat', 'boat', 'bottom', 'bush', 'coat', 'deck', 'deck', 'deck', 'dock', 'hair', 'jacket']] inputs = tensorizer.encode(visual_features, labels=labels) outputs = model(**inputs) pred = tensorizer.decode(outputs) # the output looks like this: # pred = {0: [{'caption': 'He is sailing', 'conf': 0.7070220112800598]} ``` # Citations ๐Ÿงพ HL Dataset paper: ```BibTeX @inproceedings{cafagna2023hl, title={{HL} {D}ataset: {V}isually-grounded {D}escription of {S}cenes, {A}ctions and {R}ationales}, author={Cafagna, Michele and van Deemter, Kees and Gatt, Albert}, booktitle={Proceedings of the 16th International Natural Language Generation Conference (INLG'23)}, address = {Prague, Czech Republic}, year={2023} } ``` Please consider citing the original project and the VinVL paper ```BibTeX @misc{han2021image, title={Image Scene Graph Generation (SGG) Benchmark}, author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang}, year={2021}, eprint={2107.12604}, archivePrefix={arXiv}, primaryClass={cs.CV} } @inproceedings{zhang2021vinvl, title={Vinvl: Revisiting visual representations in vision-language models}, author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={5579--5588}, year={2021} } ```