--- license: apache-2.0 base_model: HuggingFaceTB/SmolLM-135M-Instruct tags: - trl - orpo - generated_from_trainer model-index: - name: ft-smollm-135M-instruct-on-hf-ultrafeedback_rob results: [] --- # ft-smollm-135M-instruct-on-hf-ultrafeedback_rob This model is a fine-tuned version of [HuggingFaceTB/SmolLM-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-135M-Instruct) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 1.1429 - Rewards/chosen: -0.1303 - Rewards/rejected: -0.1304 - Rewards/accuracies: 0.4670 - Rewards/margins: 0.0000 - Logps/rejected: -1.3036 - Logps/chosen: -1.3032 - Logits/rejected: 27.7664 - Logits/chosen: 27.4331 - Nll Loss: 1.0675 - Log Odds Ratio: -0.7542 - Log Odds Chosen: 0.0132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.3569 | 0.8 | 100 | 1.1429 | -0.1303 | -0.1304 | 0.4670 | 0.0000 | -1.3036 | -1.3032 | 27.7664 | 27.4331 | 1.0675 | -0.7542 | 0.0132 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2