File size: 11,187 Bytes
58f2b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# coding=utf-8
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Magma."""
from typing import List, Optional, Union
import ast
import numpy as np
import torchvision
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.image_transforms import (
convert_to_rgb,
)
from transformers.image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ImageInput,
make_list_of_images,
valid_images,
)
from transformers.utils import TensorType, is_vision_available, logging
from transformers import AutoImageProcessor
logger = logging.get_logger(__name__)
if is_vision_available():
from PIL import Image
import torch
import torchvision
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def process_anyres_image(image, max_num_crops=None, base_width=768, base_height=768):
"""
Process an image with variable resolutions.
Args:
image (torch.Tensor): The input image to be processed.
max_num_crops (int): Maximum number of crops
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
assert max_num_crops is not None
grid_pinpoints = []
for i in range(1, max_num_crops+1):
for j in range(1, max_num_crops // i + 1):
grid_pinpoints.append((i, j))
grid_pinpoints = [(int(res[0] * base_width), int(res[1] * base_height)) for res in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution((image.shape[2], image.shape[1]), possible_resolutions)
# NOTE: reverse best_resolution from (width, height) to (height, width)
best_resolution = (best_resolution[1], best_resolution[0])
best_resolution_grid = (best_resolution[0] // base_height, best_resolution[1] // base_width)
# resize image tensor to best resolution
image = torch.nn.functional.interpolate(image[None,:,:,:], size=best_resolution, mode='bilinear')
# divide image tensor into patches
patches = image.unfold(2, base_height, base_height).unfold(3, base_width, base_width)
patches = patches.permute(0, 2, 3, 1, 4, 5).reshape(best_resolution_grid[0]*best_resolution_grid[1], -1, base_height, base_width)
return (patches, best_resolution_grid)
def process_anyres_image_global(image, max_num_crops=None, base_width=768, base_height=768):
"""
Process an image with variable resolutions.
Args:
image (torch.Tensor): The input image to be processed.
max_num_crops (int): Maximum number of crops
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
assert max_num_crops is not None
grid_pinpoints = []
for i in range(1, max_num_crops+1):
for j in range(1, max_num_crops // i + 1):
grid_pinpoints.append((i, j))
grid_pinpoints = [(int(res[0] * base_width), int(res[1] * base_height)) for res in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution((image.shape[2], image.shape[1]), possible_resolutions)
# NOTE: reverse best_resolution from (width, height) to (height, width)
best_resolution = (best_resolution[1], best_resolution[0])
best_resolution_grid = (best_resolution[0] // base_height, best_resolution[1] // base_width)
# resize image tensor to best resolution
image = torch.nn.functional.interpolate(image[None,:,:,:], size=best_resolution, mode='bilinear')
return image
class preprocessor():
def __init__(self, image_preprocessor, base_resolution=(256, 256)):
self.image_preprocessor = image_preprocessor
self.crop_size = {
'height': base_resolution[0],
'width': base_resolution[1]
}
self.image_mean = image_preprocessor.transforms[-1].mean
def preprocess(self, image, return_tensors='pt'):
image = self.image_preprocessor(image).unsqueeze(0)
return {
'pixel_values': image,
}
class MagmaImageProcessor(BaseImageProcessor):
r"""
Constructs a Magma image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
Args:
anyres_strategy (`str`):
strategy to cope with high-resolution images. one conventional way is multi-crop and many other works to accomadate clip-vit models.
however, since we are using convnext, which is essentially convnet, so we can use arbitary resolution images. as such, we use global strategy by defualt,
i.e., directly resize image holistically to a certain resolution.
base_img_size (int, *optional*, defaults to 768):
as convnext has 1/32 downsample rate, we use 768 as the base resolution so that the resulted feature map is 24x24.
num_crops (int, *optional*, defaults to 1):
number of effective crops when coping with images with higher resolution than 768x768. note that num_crops > 1 does not mean we are cropping the image.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
anyres_strategy: str = 'global',
base_img_size: int = 768,
num_crops: int = 1,
do_convert_rgb: bool = True,
image_mean: List[float] = OPENAI_CLIP_MEAN,
image_std: List[float] = OPENAI_CLIP_STD,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.base_img_size = base_img_size
self.anyres_strategy = anyres_strategy
self.num_crops = num_crops
self.do_convert_rgb = do_convert_rgb
self.image_mean = image_mean
self.image_std = image_std
def preprocess(
self,
images: Union[ImageInput, List[ImageInput]],
do_pad: bool = False,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
num_crops: int = None,
):
"""
Args:
images (`ImageInput` or `List[ImageInput]`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
"""
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# tensor transform and normalize
img_processor = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(self.image_mean, self.image_std)
])
images = [img_processor(image) for image in images]
image_data_type = 'half' if images[0].type() == 'torch.HalfTensor' else 'float'
images = [image.float() for image in images]
# crop images to the same size
image_patches = [process_anyres_image(image, self.num_crops if num_crops is None else num_crops, base_width=self.base_img_size, base_height=self.base_img_size) for image in images]
pixel_values = torch.cat([image[0] for image in image_patches], dim=0)
# pixel_values = [image[0] for image in image_patches]
image_sizes = [image_patch[1] for image_patch in image_patches]
if image_data_type == 'half':
pixel_values = pixel_values.half()
data = {
"pixel_values": pixel_values,
"image_sizes": image_sizes,
}
return BatchFeature(data=data, tensor_type=return_tensors)
AutoImageProcessor.register("MagmaImageProcessor", MagmaImageProcessor) |