Initial dolly-v2-7b Olive Optimized
Browse files- README.md +173 -0
- _gpt_neox_layers.0_attention_rotary_emb_Constant_5_attr__value +0 -0
- _gpt_neox_layers.0_attention_rotary_emb_Constant_attr__value +0 -0
- config.json +33 -0
- decoder_model_merged.onnx +3 -0
- decoder_model_merged.onnx_data +3 -0
- generation_config.json +6 -0
- instruct_pipeline.py +208 -0
- special_tokens_map.json +11 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
README.md
CHANGED
@@ -1,3 +1,176 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
library_name: transformers
|
6 |
+
inference: false
|
7 |
+
datasets:
|
8 |
+
- databricks/databricks-dolly-15k
|
9 |
---
|
10 |
+
# dolly-v2-7b Model Card
|
11 |
+
## Summary
|
12 |
+
|
13 |
+
Databricks’ `dolly-v2-7b`, an instruction-following large language model trained on the Databricks machine learning platform
|
14 |
+
that is licensed for commercial use. Based on `pythia-6.9b`, Dolly is trained on ~15k instruction/response fine tuning records
|
15 |
+
[`databricks-dolly-15k`](https://github.com/databrickslabs/dolly/tree/master/data) generated
|
16 |
+
by Databricks employees in capability domains from the InstructGPT paper, including brainstorming, classification, closed QA, generation,
|
17 |
+
information extraction, open QA and summarization. `dolly-v2-7b` is not a state-of-the-art model, but does exhibit surprisingly
|
18 |
+
high quality instruction following behavior not characteristic of the foundation model on which it is based.
|
19 |
+
|
20 |
+
Dolly v2 is also available in these other models sizes:
|
21 |
+
|
22 |
+
* [dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b), a 12 billion parameter based on `pythia-12b`
|
23 |
+
* [dolly-v2-3b](https://huggingface.co/databricks/dolly-v2-3b), a 2.8 billion parameter based on `pythia-2.8b`
|
24 |
+
|
25 |
+
Please refer to the [dolly GitHub repo](https://github.com/databrickslabs/dolly#getting-started-with-response-generation) for tips on
|
26 |
+
running inference for various GPU configurations.
|
27 |
+
|
28 |
+
**Owner**: Databricks, Inc.
|
29 |
+
|
30 |
+
## Model Overview
|
31 |
+
`dolly-v2-7b` is a 6.9 billion parameter causal language model created by [Databricks](https://databricks.com/) that is derived from
|
32 |
+
[EleutherAI’s](https://www.eleuther.ai/) [Pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b) and fine-tuned
|
33 |
+
on a [~15K record instruction corpus](https://github.com/databrickslabs/dolly/tree/master/data) generated by Databricks employees and released under a permissive license (CC-BY-SA)
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
|
37 |
+
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed.
|
38 |
+
In a Databricks notebook you could run:
|
39 |
+
|
40 |
+
```python
|
41 |
+
%pip install "accelerate>=0.16.0,<1" "transformers[torch]>=4.28.1,<5" "torch>=1.13.1,<2"
|
42 |
+
```
|
43 |
+
|
44 |
+
The instruction following pipeline can be loaded using the `pipeline` function as shown below. This loads a custom `InstructionTextGenerationPipeline`
|
45 |
+
found in the model repo [here](https://huggingface.co/databricks/dolly-v2-3b/blob/main/instruct_pipeline.py), which is why `trust_remote_code=True` is required.
|
46 |
+
Including `torch_dtype=torch.bfloat16` is generally recommended if this type is supported in order to reduce memory usage. It does not appear to impact output quality.
|
47 |
+
It is also fine to remove it if there is sufficient memory.
|
48 |
+
|
49 |
+
```python
|
50 |
+
import torch
|
51 |
+
from transformers import pipeline
|
52 |
+
|
53 |
+
generate_text = pipeline(model="databricks/dolly-v2-7b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
54 |
+
```
|
55 |
+
|
56 |
+
You can then use the pipeline to answer instructions:
|
57 |
+
|
58 |
+
```python
|
59 |
+
res = generate_text("Explain to me the difference between nuclear fission and fusion.")
|
60 |
+
print(res[0]["generated_text"])
|
61 |
+
```
|
62 |
+
|
63 |
+
Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/databricks/dolly-v2-3b/blob/main/instruct_pipeline.py),
|
64 |
+
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
65 |
+
|
66 |
+
```python
|
67 |
+
import torch
|
68 |
+
from instruct_pipeline import InstructionTextGenerationPipeline
|
69 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
70 |
+
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-7b", padding_side="left")
|
72 |
+
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-7b", device_map="auto", torch_dtype=torch.bfloat16)
|
73 |
+
|
74 |
+
generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
75 |
+
```
|
76 |
+
|
77 |
+
### LangChain Usage
|
78 |
+
|
79 |
+
To use the pipeline with LangChain, you must set `return_full_text=True`, as LangChain expects the full text to be returned
|
80 |
+
and the default for the pipeline is to only return the new text.
|
81 |
+
|
82 |
+
```python
|
83 |
+
import torch
|
84 |
+
from transformers import pipeline
|
85 |
+
|
86 |
+
generate_text = pipeline(model="databricks/dolly-v2-7b", torch_dtype=torch.bfloat16,
|
87 |
+
trust_remote_code=True, device_map="auto", return_full_text=True)
|
88 |
+
```
|
89 |
+
|
90 |
+
You can create a prompt that either has only an instruction or has an instruction with context:
|
91 |
+
|
92 |
+
```python
|
93 |
+
from langchain import PromptTemplate, LLMChain
|
94 |
+
from langchain.llms import HuggingFacePipeline
|
95 |
+
|
96 |
+
# template for an instrution with no input
|
97 |
+
prompt = PromptTemplate(
|
98 |
+
input_variables=["instruction"],
|
99 |
+
template="{instruction}")
|
100 |
+
|
101 |
+
# template for an instruction with input
|
102 |
+
prompt_with_context = PromptTemplate(
|
103 |
+
input_variables=["instruction", "context"],
|
104 |
+
template="{instruction}\n\nInput:\n{context}")
|
105 |
+
|
106 |
+
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
|
107 |
+
|
108 |
+
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
|
109 |
+
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
|
110 |
+
```
|
111 |
+
|
112 |
+
Example predicting using a simple instruction:
|
113 |
+
|
114 |
+
```python
|
115 |
+
print(llm_chain.predict(instruction="Explain to me the difference between nuclear fission and fusion.").lstrip())
|
116 |
+
```
|
117 |
+
|
118 |
+
Example predicting using an instruction with context:
|
119 |
+
|
120 |
+
```python
|
121 |
+
context = """George Washington (February 22, 1732[b] – December 14, 1799) was an American military officer, statesman,
|
122 |
+
and Founding Father who served as the first president of the United States from 1789 to 1797."""
|
123 |
+
|
124 |
+
print(llm_context_chain.predict(instruction="When was George Washington president?", context=context).lstrip())
|
125 |
+
```
|
126 |
+
|
127 |
+
|
128 |
+
## Known Limitations
|
129 |
+
|
130 |
+
### Performance Limitations
|
131 |
+
**`dolly-v2-7b` is not a state-of-the-art generative language model** and, though quantitative benchmarking is ongoing, is not designed to perform
|
132 |
+
competitively with more modern model architectures or models subject to larger pretraining corpuses.
|
133 |
+
|
134 |
+
The Dolly model family is under active development, and so any list of shortcomings is unlikely to be exhaustive, but we include known limitations and misfires here as a means to document and share our preliminary findings with the community.
|
135 |
+
In particular, `dolly-v2-7b` struggles with: syntactically complex prompts, programming problems, mathematical operations, factual errors,
|
136 |
+
dates and times, open-ended question answering, hallucination, enumerating lists of specific length, stylistic mimicry, having a sense of humor, etc.
|
137 |
+
Moreover, we find that `dolly-v2-7b` does not have some capabilities, such as well-formatted letter writing, present in the original model.
|
138 |
+
|
139 |
+
### Dataset Limitations
|
140 |
+
Like all language models, `dolly-v2-7b` reflects the content and limitations of its training corpuses.
|
141 |
+
|
142 |
+
- **The Pile**: GPT-J’s pre-training corpus contains content mostly collected from the public internet, and like most web-scale datasets,
|
143 |
+
it contains content many users would find objectionable. As such, the model is likely to reflect these shortcomings, potentially overtly
|
144 |
+
in the case it is explicitly asked to produce objectionable content, and sometimes subtly, as in the case of biased or harmful implicit
|
145 |
+
associations.
|
146 |
+
|
147 |
+
- **`databricks-dolly-15k`**: The training data on which `dolly-v2-7b` is instruction tuned represents natural language instructions generated
|
148 |
+
by Databricks employees during a period spanning March and April 2023 and includes passages from Wikipedia as references passages
|
149 |
+
for instruction categories like closed QA and summarization. To our knowledge it does not contain obscenity, intellectual property or
|
150 |
+
personally identifying information about non-public figures, but it may contain typos and factual errors.
|
151 |
+
The dataset may also reflect biases found in Wikipedia. Finally, the dataset likely reflects
|
152 |
+
the interests and semantic choices of Databricks employees, a demographic which is not representative of the global population at large.
|
153 |
+
|
154 |
+
Databricks is committed to ongoing research and development efforts to develop helpful, honest and harmless AI technologies that
|
155 |
+
maximize the potential of all individuals and organizations.
|
156 |
+
|
157 |
+
### Benchmark Metrics
|
158 |
+
|
159 |
+
Below you'll find various models benchmark performance on the [EleutherAI LLM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness);
|
160 |
+
model results are sorted by geometric mean to produce an intelligible ordering. As outlined above, these results demonstrate that `dolly-v2-7b` is not state of the art,
|
161 |
+
and in fact underperforms `dolly-v1-6b` in some evaluation benchmarks. We believe this owes to the composition and size of the underlying fine tuning datasets,
|
162 |
+
but a robust statement as to the sources of these variations requires further study.
|
163 |
+
|
164 |
+
| model | openbookqa | arc_easy | winogrande | hellaswag | arc_challenge | piqa | boolq | gmean |
|
165 |
+
| --------------------------------- | ------------ | ---------- | ------------ | ----------- | --------------- | -------- | -------- | ---------|
|
166 |
+
| EleutherAI/pythia-2.8b | 0.348 | 0.585859 | 0.589582 | 0.591217 | 0.323379 | 0.73395 | 0.638226 | 0.523431 |
|
167 |
+
| EleutherAI/pythia-6.9b | 0.368 | 0.604798 | 0.608524 | 0.631548 | 0.343857 | 0.761153 | 0.6263 | 0.543567 |
|
168 |
+
| databricks/dolly-v2-3b | 0.384 | 0.611532 | 0.589582 | 0.650767 | 0.370307 | 0.742655 | 0.575535 | 0.544886 |
|
169 |
+
| EleutherAI/pythia-12b | 0.364 | 0.627104 | 0.636148 | 0.668094 | 0.346416 | 0.760065 | 0.673394 | 0.559676 |
|
170 |
+
| EleutherAI/gpt-j-6B | 0.382 | 0.621633 | 0.651144 | 0.662617 | 0.363481 | 0.761153 | 0.655963 | 0.565936 |
|
171 |
+
| databricks/dolly-v2-12b | 0.408 | 0.63931 | 0.616417 | 0.707927 | 0.388225 | 0.757889 | 0.568196 | 0.56781 |
|
172 |
+
| databricks/dolly-v2-7b | 0.392 | 0.633838 | 0.607735 | 0.686517 | 0.406997 | 0.750816 | 0.644037 | 0.573487 |
|
173 |
+
| databricks/dolly-v1-6b | 0.41 | 0.62963 | 0.643252 | 0.676758 | 0.384812 | 0.773667 | 0.687768 | 0.583431 |
|
174 |
+
| EleutherAI/gpt-neox-20b | 0.402 | 0.683923 | 0.656669 | 0.7142 | 0.408703 | 0.784004 | 0.695413 | 0.602236 |
|
175 |
+
|
176 |
+
# Happy Hacking!
|
_gpt_neox_layers.0_attention_rotary_emb_Constant_5_attr__value
ADDED
Binary file (262 kB). View file
|
|
_gpt_neox_layers.0_attention_rotary_emb_Constant_attr__value
ADDED
Binary file (262 kB). View file
|
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "databricks/dolly-v2-7b",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoXForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": 0.1,
|
8 |
+
"custom_pipelines": {
|
9 |
+
"text-generation": {
|
10 |
+
"impl": "instruct_pipeline.InstructionTextGenerationPipeline",
|
11 |
+
"pt": "AutoModelForCausalLM",
|
12 |
+
"tf": "TFAutoModelForCausalLM"
|
13 |
+
}
|
14 |
+
},
|
15 |
+
"eos_token_id": 0,
|
16 |
+
"hidden_act": "gelu",
|
17 |
+
"hidden_size": 4096,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 16384,
|
20 |
+
"layer_norm_eps": 1e-05,
|
21 |
+
"max_position_embeddings": 2048,
|
22 |
+
"model_type": "gpt_neox",
|
23 |
+
"num_attention_heads": 32,
|
24 |
+
"num_hidden_layers": 32,
|
25 |
+
"rotary_emb_base": 10000,
|
26 |
+
"rotary_pct": 0.25,
|
27 |
+
"tie_word_embeddings": false,
|
28 |
+
"torch_dtype": "bfloat16",
|
29 |
+
"transformers_version": "4.29.0",
|
30 |
+
"use_cache": true,
|
31 |
+
"use_parallel_residual": true,
|
32 |
+
"vocab_size": 50280
|
33 |
+
}
|
decoder_model_merged.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ea722b6e7020eae65c844c168d5a97279d3c0d00fccce5bdcfa65688f6e96d6
|
3 |
+
size 4169900
|
decoder_model_merged.onnx_data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b6b1e949e90e91c080f89c3aed058c04b8eb842684d9c8502b0b455ac36ef8c
|
3 |
+
size 13716054016
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 0,
|
5 |
+
"transformers_version": "4.29.0"
|
6 |
+
}
|
instruct_pipeline.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import re
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from transformers import Pipeline, PreTrainedTokenizer
|
7 |
+
|
8 |
+
from transformers.utils import is_tf_available
|
9 |
+
from transformers import TextStreamer
|
10 |
+
|
11 |
+
if is_tf_available():
|
12 |
+
import tensorflow as tf
|
13 |
+
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
INSTRUCTION_KEY = "### Instruction:"
|
17 |
+
RESPONSE_KEY = "### Response:"
|
18 |
+
END_KEY = "### End"
|
19 |
+
INTRO_BLURB = (
|
20 |
+
"Below is an instruction that describes a task. Write a response that appropriately completes the request."
|
21 |
+
)
|
22 |
+
|
23 |
+
# This is the prompt that is used for generating responses using an already trained model. It ends with the response
|
24 |
+
# key, where the job of the model is to provide the completion that follows it (i.e. the response itself).
|
25 |
+
PROMPT_FOR_GENERATION_FORMAT = """{intro}
|
26 |
+
{instruction_key}
|
27 |
+
{instruction}
|
28 |
+
{response_key}
|
29 |
+
""".format(
|
30 |
+
intro=INTRO_BLURB,
|
31 |
+
instruction_key=INSTRUCTION_KEY,
|
32 |
+
instruction="{instruction}",
|
33 |
+
response_key=RESPONSE_KEY,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def get_special_token_id(tokenizer: PreTrainedTokenizer, key: str) -> int:
|
38 |
+
"""Gets the token ID for a given string that has been added to the tokenizer as a special token.
|
39 |
+
When training, we configure the tokenizer so that the sequences like "### Instruction:" and "### End" are
|
40 |
+
treated specially and converted to a single, new token. This retrieves the token ID each of these keys map to.
|
41 |
+
Args:
|
42 |
+
tokenizer (PreTrainedTokenizer): the tokenizer
|
43 |
+
key (str): the key to convert to a single token
|
44 |
+
Raises:
|
45 |
+
RuntimeError: if more than one ID was generated
|
46 |
+
Returns:
|
47 |
+
int: the token ID for the given key
|
48 |
+
"""
|
49 |
+
token_ids = tokenizer.encode(key)
|
50 |
+
if len(token_ids) > 1:
|
51 |
+
raise ValueError(f"Expected only a single token for '{key}' but found {token_ids}")
|
52 |
+
return token_ids[0]
|
53 |
+
|
54 |
+
|
55 |
+
class InstructionTextGenerationPipeline(Pipeline):
|
56 |
+
def __init__(
|
57 |
+
self, *args, do_sample: bool = True, max_new_tokens: int = 256, streamer: TextStreamer, top_p: float = 0.92, top_k: int = 0, **kwargs
|
58 |
+
):
|
59 |
+
"""Initialize the pipeline
|
60 |
+
Args:
|
61 |
+
do_sample (bool, optional): Whether or not to use sampling. Defaults to True.
|
62 |
+
max_new_tokens (int, optional): Max new tokens after the prompt to generate. Defaults to 128.
|
63 |
+
top_p (float, optional): If set to float < 1, only the smallest set of most probable tokens with
|
64 |
+
probabilities that add up to top_p or higher are kept for generation. Defaults to 0.92.
|
65 |
+
top_k (int, optional): The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
66 |
+
Defaults to 0.
|
67 |
+
"""
|
68 |
+
super().__init__(*args, do_sample=do_sample, max_new_tokens=max_new_tokens, top_p=top_p, top_k=top_k,
|
69 |
+
**kwargs)
|
70 |
+
self.streamer = streamer
|
71 |
+
|
72 |
+
def _sanitize_parameters(self,
|
73 |
+
return_full_text: bool = None,
|
74 |
+
**generate_kwargs):
|
75 |
+
preprocess_params = {}
|
76 |
+
|
77 |
+
# newer versions of the tokenizer configure the response key as a special token. newer versions still may
|
78 |
+
# append a newline to yield a single token. find whatever token is configured for the response key.
|
79 |
+
tokenizer_response_key = next(
|
80 |
+
(token for token in self.tokenizer.additional_special_tokens if token.startswith(RESPONSE_KEY)), None
|
81 |
+
)
|
82 |
+
|
83 |
+
response_key_token_id = None
|
84 |
+
end_key_token_id = None
|
85 |
+
if tokenizer_response_key:
|
86 |
+
try:
|
87 |
+
response_key_token_id = get_special_token_id(self.tokenizer, tokenizer_response_key)
|
88 |
+
end_key_token_id = get_special_token_id(self.tokenizer, END_KEY)
|
89 |
+
|
90 |
+
# Ensure generation stops once it generates "### End"
|
91 |
+
generate_kwargs["eos_token_id"] = end_key_token_id
|
92 |
+
except ValueError:
|
93 |
+
pass
|
94 |
+
|
95 |
+
forward_params = generate_kwargs
|
96 |
+
postprocess_params = {
|
97 |
+
"response_key_token_id": response_key_token_id,
|
98 |
+
"end_key_token_id": end_key_token_id
|
99 |
+
}
|
100 |
+
|
101 |
+
if return_full_text is not None:
|
102 |
+
postprocess_params["return_full_text"] = return_full_text
|
103 |
+
|
104 |
+
return preprocess_params, forward_params, postprocess_params
|
105 |
+
|
106 |
+
def preprocess(self, instruction_text, **generate_kwargs):
|
107 |
+
prompt_text = PROMPT_FOR_GENERATION_FORMAT.format(instruction=instruction_text)
|
108 |
+
inputs = self.tokenizer(
|
109 |
+
prompt_text,
|
110 |
+
return_tensors="pt",
|
111 |
+
)
|
112 |
+
inputs["prompt_text"] = prompt_text
|
113 |
+
inputs["instruction_text"] = instruction_text
|
114 |
+
return inputs
|
115 |
+
|
116 |
+
def _forward(self, model_inputs, **generate_kwargs):
|
117 |
+
input_ids = model_inputs["input_ids"]
|
118 |
+
attention_mask = model_inputs.get("attention_mask", None)
|
119 |
+
|
120 |
+
if input_ids.shape[1] == 0:
|
121 |
+
input_ids = None
|
122 |
+
attention_mask = None
|
123 |
+
in_b = 1
|
124 |
+
else:
|
125 |
+
in_b = input_ids.shape[0]
|
126 |
+
|
127 |
+
generated_sequence = self.model.generate(
|
128 |
+
input_ids=input_ids.to(self.model.device),
|
129 |
+
attention_mask=attention_mask.to(self.model.device) if attention_mask is not None else None,
|
130 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
131 |
+
streamer=self.streamer,
|
132 |
+
**generate_kwargs,
|
133 |
+
)
|
134 |
+
|
135 |
+
out_b = generated_sequence.shape[0]
|
136 |
+
if self.framework == "pt":
|
137 |
+
generated_sequence = generated_sequence.reshape(in_b, out_b // in_b, *generated_sequence.shape[1:])
|
138 |
+
elif self.framework == "tf":
|
139 |
+
generated_sequence = tf.reshape(generated_sequence, (in_b, out_b // in_b, *generated_sequence.shape[1:]))
|
140 |
+
|
141 |
+
instruction_text = model_inputs.pop("instruction_text")
|
142 |
+
return {"generated_sequence": generated_sequence, "input_ids": input_ids, "instruction_text": instruction_text}
|
143 |
+
|
144 |
+
def postprocess(self, model_outputs, response_key_token_id, end_key_token_id, return_full_text: bool = False):
|
145 |
+
|
146 |
+
generated_sequence = model_outputs["generated_sequence"][0]
|
147 |
+
instruction_text = model_outputs["instruction_text"]
|
148 |
+
|
149 |
+
generated_sequence: List[List[int]] = generated_sequence.numpy().tolist()
|
150 |
+
records = []
|
151 |
+
for sequence in generated_sequence:
|
152 |
+
|
153 |
+
# The response will be set to this variable if we can identify it.
|
154 |
+
decoded = None
|
155 |
+
|
156 |
+
# If we have token IDs for the response and end, then we can find the tokens and only decode between them.
|
157 |
+
if response_key_token_id and end_key_token_id:
|
158 |
+
# Find where "### Response:" is first found in the generated tokens. Considering this is part of the
|
159 |
+
# prompt, we should definitely find it. We will return the tokens found after this token.
|
160 |
+
try:
|
161 |
+
response_pos = sequence.index(response_key_token_id)
|
162 |
+
except ValueError:
|
163 |
+
logger.warn(f"Could not find response key {response_key_token_id} in: {sequence}")
|
164 |
+
response_pos = None
|
165 |
+
|
166 |
+
if response_pos:
|
167 |
+
# Next find where "### End" is located. The model has been trained to end its responses with this
|
168 |
+
# sequence (or actually, the token ID it maps to, since it is a special token). We may not find
|
169 |
+
# this token, as the response could be truncated. If we don't find it then just return everything
|
170 |
+
# to the end. Note that even though we set eos_token_id, we still see the this token at the end.
|
171 |
+
try:
|
172 |
+
end_pos = sequence.index(end_key_token_id)
|
173 |
+
except ValueError:
|
174 |
+
end_pos = None
|
175 |
+
|
176 |
+
decoded = self.tokenizer.decode(sequence[response_pos + 1 : end_pos]).strip()
|
177 |
+
|
178 |
+
if not decoded:
|
179 |
+
# Otherwise we'll decode everything and use a regex to find the response and end.
|
180 |
+
|
181 |
+
fully_decoded = self.tokenizer.decode(sequence)
|
182 |
+
|
183 |
+
# The response appears after "### Response:". The model has been trained to append "### End" at the
|
184 |
+
# end.
|
185 |
+
m = re.search(r"#+\s*Response:\s*(.+?)#+\s*End", fully_decoded, flags=re.DOTALL)
|
186 |
+
|
187 |
+
if m:
|
188 |
+
decoded = m.group(1).strip()
|
189 |
+
else:
|
190 |
+
# The model might not generate the "### End" sequence before reaching the max tokens. In this case,
|
191 |
+
# return everything after "### Response:".
|
192 |
+
m = re.search(r"#+\s*Response:\s*(.+)", fully_decoded, flags=re.DOTALL)
|
193 |
+
if m:
|
194 |
+
decoded = m.group(1).strip()
|
195 |
+
else:
|
196 |
+
logger.warn(f"Failed to find response in:\n{fully_decoded}")
|
197 |
+
|
198 |
+
# If the full text is requested, then append the decoded text to the original instruction.
|
199 |
+
# This technically isn't the full text, as we format the instruction in the prompt the model has been
|
200 |
+
# trained on, but to the client it will appear to be the full text.
|
201 |
+
if return_full_text:
|
202 |
+
decoded = f"{instruction_text}\n{decoded}"
|
203 |
+
|
204 |
+
rec = {"generated_text": decoded}
|
205 |
+
|
206 |
+
records.append(rec)
|
207 |
+
|
208 |
+
return records
|
special_tokens_map.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"### End",
|
4 |
+
"### Instruction:",
|
5 |
+
"### Response:"
|
6 |
+
],
|
7 |
+
"bos_token": "<|endoftext|>",
|
8 |
+
"eos_token": "<|endoftext|>",
|
9 |
+
"pad_token": "<|endoftext|>",
|
10 |
+
"unk_token": "<|endoftext|>"
|
11 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 1000000000000000019884624838656,
|
7 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|