Update usage to be specific to ORT+DML
Browse files
README.md
CHANGED
@@ -49,96 +49,29 @@ The ONNX model above was processed with the [Olive](https://github.com/microsoft
|
|
49 |
[EleutherAI’s](https://www.eleuther.ai/) [Pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b) and fine-tuned
|
50 |
on a [~15K record instruction corpus](https://github.com/databrickslabs/dolly/tree/master/data) generated by Databricks employees and released under a permissive license (CC-BY-SA)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed.
|
55 |
-
In a Databricks notebook you could run:
|
56 |
-
|
57 |
-
```python
|
58 |
-
%pip install "accelerate>=0.16.0,<1" "transformers[torch]>=4.28.1,<5" "torch>=1.13.1,<2"
|
59 |
-
```
|
60 |
|
61 |
-
|
62 |
-
found in the model repo [here](https://huggingface.co/databricks/dolly-v2-3b/blob/main/instruct_pipeline.py), which is why `trust_remote_code=True` is required.
|
63 |
-
Including `torch_dtype=torch.bfloat16` is generally recommended if this type is supported in order to reduce memory usage. It does not appear to impact output quality.
|
64 |
-
It is also fine to remove it if there is sufficient memory.
|
65 |
-
|
66 |
-
```python
|
67 |
-
import torch
|
68 |
-
from transformers import pipeline
|
69 |
-
|
70 |
-
generate_text = pipeline(model="databricks/dolly-v2-7b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto")
|
71 |
-
```
|
72 |
|
73 |
-
|
74 |
|
75 |
```python
|
76 |
-
|
77 |
-
print(res[0]["generated_text"])
|
78 |
```
|
79 |
|
80 |
-
|
81 |
-
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
|
82 |
|
83 |
```python
|
84 |
-
import
|
|
|
85 |
from instruct_pipeline import InstructionTextGenerationPipeline
|
86 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
87 |
-
|
88 |
-
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-7b", padding_side="left")
|
89 |
-
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-7b", device_map="auto", torch_dtype=torch.bfloat16)
|
90 |
-
|
91 |
-
generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer)
|
92 |
-
```
|
93 |
-
|
94 |
-
### LangChain Usage
|
95 |
-
|
96 |
-
To use the pipeline with LangChain, you must set `return_full_text=True`, as LangChain expects the full text to be returned
|
97 |
-
and the default for the pipeline is to only return the new text.
|
98 |
-
|
99 |
-
```python
|
100 |
-
import torch
|
101 |
-
from transformers import pipeline
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
```
|
106 |
-
|
107 |
-
You can create a prompt that either has only an instruction or has an instruction with context:
|
108 |
-
|
109 |
-
```python
|
110 |
-
from langchain import PromptTemplate, LLMChain
|
111 |
-
from langchain.llms import HuggingFacePipeline
|
112 |
-
|
113 |
-
# template for an instrution with no input
|
114 |
-
prompt = PromptTemplate(
|
115 |
-
input_variables=["instruction"],
|
116 |
-
template="{instruction}")
|
117 |
-
|
118 |
-
# template for an instruction with input
|
119 |
-
prompt_with_context = PromptTemplate(
|
120 |
-
input_variables=["instruction", "context"],
|
121 |
-
template="{instruction}\n\nInput:\n{context}")
|
122 |
-
|
123 |
-
hf_pipeline = HuggingFacePipeline(pipeline=generate_text)
|
124 |
-
|
125 |
-
llm_chain = LLMChain(llm=hf_pipeline, prompt=prompt)
|
126 |
-
llm_context_chain = LLMChain(llm=hf_pipeline, prompt=prompt_with_context)
|
127 |
-
```
|
128 |
-
|
129 |
-
Example predicting using a simple instruction:
|
130 |
-
|
131 |
-
```python
|
132 |
-
print(llm_chain.predict(instruction="Explain to me the difference between nuclear fission and fusion.").lstrip())
|
133 |
-
```
|
134 |
-
|
135 |
-
Example predicting using an instruction with context:
|
136 |
-
|
137 |
-
```python
|
138 |
-
context = """George Washington (February 22, 1732[b] – December 14, 1799) was an American military officer, statesman,
|
139 |
-
and Founding Father who served as the first president of the United States from 1789 to 1797."""
|
140 |
|
141 |
-
|
|
|
|
|
142 |
```
|
143 |
|
144 |
|
|
|
49 |
[EleutherAI’s](https://www.eleuther.ai/) [Pythia-6.9b](https://huggingface.co/EleutherAI/pythia-6.9b) and fine-tuned
|
50 |
on a [~15K record instruction corpus](https://github.com/databrickslabs/dolly/tree/master/data) generated by Databricks employees and released under a permissive license (CC-BY-SA)
|
51 |
|
52 |
+
`dolly-v2-7b-olive-optimized` is an optimized ONNX model of `dolly-v2-7b` generated by [Olive](https://github.com/microsoft/Olive) that is meant to be used with ONNX Runtime and DirectML.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
## Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
To use the model with the `transformers` library on a machine with ONNX Runtime and DirectML, first make sure you have the `transformers`, `accelerate`, `optimum`, `onnxruntime-directml` and `onnx` libraries installed:
|
57 |
|
58 |
```python
|
59 |
+
pip install "accelerate>=0.16.0,<1" "transformers[torch]>=4.28.1,<5" "torch>=1.13.1,<2" "optimum>=1.8.8,<2" "onnxruntime-directml>=1.15.1,<2" "onnx>=1.14.0<2"
|
|
|
60 |
```
|
61 |
|
62 |
+
You can then download [instruct_pipeline.py](https://huggingface.co/microsoft/dolly-v2-7b-olive-optimized/raw/main/instruct_pipeline.py) and construct the pipeline from the loaded model and tokenizer:
|
|
|
63 |
|
64 |
```python
|
65 |
+
from transformers import AutoTokenizer, TextStreamer
|
66 |
+
from optimum.onnxruntime import ORTModelForCausalLM
|
67 |
from instruct_pipeline import InstructionTextGenerationPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/dolly-v2-7b-olive-optimized", padding_side="left")
|
70 |
+
model = ORTModelForCausalLM.from_pretrained("microsoft/dolly-v2-7b-olive-optimized", provider="DmlExecutionProvider", use_cache=True, use_merged=True, use_io_binding=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
73 |
+
generate_text = InstructionTextGenerationPipeline(model=model, streamer=streamer, tokenizer=tokenizer, max_new_tokens=128)
|
74 |
+
generate_text("Explain to me the difference between nuclear fission and fusion.")
|
75 |
```
|
76 |
|
77 |
|