Ubuntu
commited on
Commit
·
f39cf74
1
Parent(s):
edb09fc
support hf
Browse files- README.md +19 -51
- config.json +1 -1
- md.py +33 -0
- ocr.py +73 -0
- tokenizer.json +2 -2
README.md
CHANGED
@@ -12,59 +12,26 @@ Kosmos-2.5 is a multimodal literate model for machine reading of text-intensive
|
|
12 |
|
13 |
[Kosmos-2.5: A Multimodal Literate Model](https://arxiv.org/abs/2309.11419)
|
14 |
|
15 |
-
## NOTE
|
16 |
Since this is a generative model, there is a risk of **hallucination** during the generation process, and it **CAN NOT** guarantee the accuracy of all OCR/Markdown results in the images.
|
17 |
|
18 |
-
##
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
32 |
-
prompt = "<ocr>" # <md>
|
33 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
34 |
-
height, width = inputs.pop("height"), inputs.pop("width")
|
35 |
-
raw_width, raw_height = image.size
|
36 |
-
scale_height = raw_height / height
|
37 |
-
scale_width = raw_width / width
|
38 |
-
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
|
39 |
-
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
40 |
-
generated_ids = model.generate(
|
41 |
-
**inputs,
|
42 |
-
max_new_tokens=1024,
|
43 |
-
)
|
44 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
45 |
-
def postprocess(y, scale_height, scale_width):
|
46 |
-
y = y.replace(prompt, "")
|
47 |
-
if "<md>" in prompt:
|
48 |
-
return y
|
49 |
-
pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>"
|
50 |
-
bboxs_raw = re.findall(pattern, y)
|
51 |
-
lines = re.split(pattern, y)[1:]
|
52 |
-
bboxs = [re.findall(r"\d+", i) for i in bboxs_raw]
|
53 |
-
bboxs = [[int(j) for j in i] for i in bboxs]
|
54 |
-
info = ""
|
55 |
-
for i in range(len(lines)):
|
56 |
-
box = bboxs[i]
|
57 |
-
x0, y0, x1, y1 = box
|
58 |
-
if not (x0 >= x1 or y0 >= y1):
|
59 |
-
x0 = int(x0 * scale_width)
|
60 |
-
y0 = int(y0 * scale_height)
|
61 |
-
x1 = int(x1 * scale_width)
|
62 |
-
y1 = int(y1 * scale_height)
|
63 |
-
info += f"{x0},{y0},{x1},{y0},{x1},{y1},{x0},{y1},{lines[i]}"
|
64 |
-
return info
|
65 |
-
output_text = postprocess(generated_text[0], scale_height, scale_width)
|
66 |
-
print(output_text)
|
67 |
```
|
|
|
|
|
|
|
68 |
```text
|
69 |
55,595,71,595,71,629,55,629,1
|
70 |
82,595,481,595,481,635,82,635,[REG] BLACK SAKURA
|
@@ -81,7 +48,7 @@ print(output_text)
|
|
81 |
24,905,858,905,858,956,24,956,Total 50,000
|
82 |
17,1096,868,1096,868,1150,17,1150,Card Payment 50,000
|
83 |
```
|
84 |
-
|
85 |
|
86 |
|
87 |
## Citation
|
@@ -103,3 +70,4 @@ The content of this project itself is licensed under the [MIT](https://github.co
|
|
103 |
[Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
|
104 |
|
105 |
|
|
|
|
12 |
|
13 |
[Kosmos-2.5: A Multimodal Literate Model](https://arxiv.org/abs/2309.11419)
|
14 |
|
15 |
+
## NOTE
|
16 |
Since this is a generative model, there is a risk of **hallucination** during the generation process, and it **CAN NOT** guarantee the accuracy of all OCR/Markdown results in the images.
|
17 |
|
18 |
+
## Usage
|
19 |
+
### Markdown Task
|
20 |
+
Run with [md.py](md.py).
|
21 |
+
```text
|
22 |
+
- **1 \[REG\] BLACK SAKURA** 45,455
|
23 |
+
- **1 COOKIE DOH SAUCES** 0
|
24 |
+
- **1 NATA DE COCO** 0
|
25 |
+
- **Sub Total** 45,455
|
26 |
+
- **PB1 (10%)** 4,545
|
27 |
+
- **Rounding** 0
|
28 |
+
- **Total** **50,000**
|
29 |
+
|
30 |
+
Card Payment 50,000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
```
|
32 |
+
|
33 |
+
### OCR Task
|
34 |
+
Run with [ocr.py](ocr.py).
|
35 |
```text
|
36 |
55,595,71,595,71,629,55,629,1
|
37 |
82,595,481,595,481,635,82,635,[REG] BLACK SAKURA
|
|
|
48 |
24,905,858,905,858,956,24,956,Total 50,000
|
49 |
17,1096,868,1096,868,1150,17,1150,Card Payment 50,000
|
50 |
```
|
51 |
+
![output](output.png)
|
52 |
|
53 |
|
54 |
## Citation
|
|
|
70 |
[Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
|
71 |
|
72 |
|
73 |
+
|
config.json
CHANGED
@@ -148,4 +148,4 @@
|
|
148 |
"typical_p": 1.0,
|
149 |
"use_bfloat16": false
|
150 |
}
|
151 |
-
}
|
|
|
148 |
"typical_p": 1.0,
|
149 |
"use_bfloat16": false
|
150 |
}
|
151 |
+
}
|
md.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration
|
6 |
+
|
7 |
+
repo = "microsoft/kosmos-2.5"
|
8 |
+
device = "cuda:0"
|
9 |
+
dtype = torch.bfloat16
|
10 |
+
model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, torch_dtype=dtype)
|
11 |
+
processor = AutoProcessor.from_pretrained(repo)
|
12 |
+
|
13 |
+
# sample image
|
14 |
+
url = "https://huggingface.co/microsoft/kosmos-2.5/blob/main/receipt_00008.png"
|
15 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
16 |
+
|
17 |
+
prompt = "<md>"
|
18 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
19 |
+
|
20 |
+
height, width = inputs.pop("height"), inputs.pop("width")
|
21 |
+
raw_width, raw_height = image.size
|
22 |
+
scale_height = raw_height / height
|
23 |
+
scale_width = raw_width / width
|
24 |
+
|
25 |
+
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
|
26 |
+
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
27 |
+
generated_ids = model.generate(
|
28 |
+
**inputs,
|
29 |
+
max_new_tokens=1024,
|
30 |
+
)
|
31 |
+
|
32 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
33 |
+
print(generated_text[0])
|
ocr.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import requests
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration
|
6 |
+
|
7 |
+
repo = "microsoft/kosmos-2.5"
|
8 |
+
device = "cuda:0"
|
9 |
+
dtype = torch.bfloat16
|
10 |
+
model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, torch_dtype=dtype)
|
11 |
+
processor = AutoProcessor.from_pretrained(repo)
|
12 |
+
|
13 |
+
# sample image
|
14 |
+
url = "https://huggingface.co/microsoft/kosmos-2.5/blob/main/receipt_00008.png"
|
15 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
16 |
+
|
17 |
+
# bs = 1
|
18 |
+
prompt = "<ocr>"
|
19 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
20 |
+
height, width = inputs.pop("height"), inputs.pop("width")
|
21 |
+
raw_width, raw_height = image.size
|
22 |
+
scale_height = raw_height / height
|
23 |
+
scale_width = raw_width / width
|
24 |
+
|
25 |
+
# bs > 1, batch generation
|
26 |
+
# inputs = processor(text=[prompt, prompt], images=[image,image], return_tensors="pt")
|
27 |
+
# height, width = inputs.pop("height"), inputs.pop("width")
|
28 |
+
# raw_width, raw_height = image.size
|
29 |
+
# scale_height = raw_height / height[0]
|
30 |
+
# scale_width = raw_width / width[0]
|
31 |
+
|
32 |
+
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
|
33 |
+
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
34 |
+
generated_ids = model.generate(
|
35 |
+
**inputs,
|
36 |
+
max_new_tokens=1024,
|
37 |
+
)
|
38 |
+
|
39 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
40 |
+
def post_process(y, scale_height, scale_width):
|
41 |
+
y = y.replace(prompt, "")
|
42 |
+
if "<md>" in prompt:
|
43 |
+
return y
|
44 |
+
pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>"
|
45 |
+
bboxs_raw = re.findall(pattern, y)
|
46 |
+
lines = re.split(pattern, y)[1:]
|
47 |
+
bboxs = [re.findall(r"\d+", i) for i in bboxs_raw]
|
48 |
+
bboxs = [[int(j) for j in i] for i in bboxs]
|
49 |
+
info = ""
|
50 |
+
for i in range(len(lines)):
|
51 |
+
box = bboxs[i]
|
52 |
+
x0, y0, x1, y1 = box
|
53 |
+
if not (x0 >= x1 or y0 >= y1):
|
54 |
+
x0 = int(x0 * scale_width)
|
55 |
+
y0 = int(y0 * scale_height)
|
56 |
+
x1 = int(x1 * scale_width)
|
57 |
+
y1 = int(y1 * scale_height)
|
58 |
+
info += f"{x0},{y0},{x1},{y0},{x1},{y1},{x0},{y1},{lines[i]}"
|
59 |
+
return info
|
60 |
+
|
61 |
+
output_text = post_process(generated_text[0], scale_height, scale_width)
|
62 |
+
print(output_text)
|
63 |
+
|
64 |
+
draw = ImageDraw.Draw(image)
|
65 |
+
lines = output_text.split("\n")
|
66 |
+
for line in lines:
|
67 |
+
# draw the bounding box
|
68 |
+
line = list(line.split(","))
|
69 |
+
if len(line) < 8:
|
70 |
+
continue
|
71 |
+
line = list(map(int, line[:8]))
|
72 |
+
draw.polygon(line, outline="red")
|
73 |
+
image.save("output.png")
|
tokenizer.json
CHANGED
@@ -91,7 +91,7 @@
|
|
91 |
"lstrip": true,
|
92 |
"rstrip": false,
|
93 |
"normalized": false,
|
94 |
-
"special":
|
95 |
},
|
96 |
{
|
97 |
"id": 100283,
|
@@ -145,7 +145,7 @@
|
|
145 |
"lstrip": true,
|
146 |
"rstrip": false,
|
147 |
"normalized": false,
|
148 |
-
"special":
|
149 |
},
|
150 |
{
|
151 |
"id": 100289,
|
|
|
91 |
"lstrip": true,
|
92 |
"rstrip": false,
|
93 |
"normalized": false,
|
94 |
+
"special": true
|
95 |
},
|
96 |
{
|
97 |
"id": 100283,
|
|
|
145 |
"lstrip": true,
|
146 |
"rstrip": false,
|
147 |
"normalized": false,
|
148 |
+
"special": true
|
149 |
},
|
150 |
{
|
151 |
"id": 100289,
|