Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,183 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
|
|
5 |
|
6 |
-
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
9 |
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
##
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
[
|
|
|
|
|
57 |
|
58 |
-
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
-
|
|
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
|
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
-
### Training Procedure
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
|
99 |
-
|
100 |
|
101 |
-
[
|
102 |
|
103 |
-
##
|
|
|
104 |
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- functioncalling
|
5 |
+
license: apache-2.0
|
6 |
+
language:
|
7 |
+
- it
|
8 |
+
pipeline_tag: text2text-generation
|
9 |
---
|
10 |
+
<img src="https://hoodie-creator.s3.eu-west-1.amazonaws.com/2c331689-original.png" alt="gorilla-llm" border="0" width="400px">
|
11 |
|
12 |
+
## Introduction
|
13 |
+
Zefiro functioncalling extends Large Language Model(LLM) Chat Completion feature to formulate
|
14 |
+
executable APIs call given Italian based natural language instructions and API context. With OpenFunctions v2,
|
15 |
|
16 |
+
we now support:
|
17 |
+
1. Relevance detection - when chatting, chat. When asked for function, returns a function
|
18 |
+
2. REST - native REST support
|
19 |
|
20 |
|
21 |
+
## Model description
|
22 |
|
23 |
+
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
|
24 |
+
- **Language(s) (NLP):** Primarily Italian
|
25 |
+
- **License:** Apache 2
|
26 |
+
- **Finetuned from model:** [gorilla-llm](https://https://huggingface.co/gorilla-llm/gorilla-openfunctions-v2)
|
27 |
+
- **Developed by:** [zefiro.ai](https://zefiro.ai)
|
28 |
+
- **Sponsored by:** [Seeweb](https://seeweb.it)
|
29 |
|
|
|
30 |
|
31 |
+
## Models Available
|
32 |
+
|Model | Functionality|
|
33 |
+
|---|---|
|
34 |
+
|zefiro-funcioncalling-v0.3-alpha | Given a function, and user intent, returns properly formatted json with the right arguments|
|
35 |
|
36 |
+
All of our models are hosted on our Huggingface mii-community org: [zefiro-functioncalling-v0.3-alpha](https://huggingface.co/mii-community/zefiro-functioncalling-v0.3-alpha).
|
37 |
|
38 |
+
## Training
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
Zefiro functioncalling alpha is a 7B parameter model, and is fine tuned version of [gorilla-llm](https://huggingface.co/gorilla-llm/gorilla-openfunctions-v2) that is built on top of the [deepseek coder](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) LLM.
|
41 |
|
|
|
42 |
|
|
|
|
|
|
|
43 |
|
44 |
+
## Example Usage (Local)
|
45 |
|
|
|
46 |
|
47 |
+
1. OpenFunctions is compatible with OpenAI Functions
|
48 |
|
49 |
+
```bash
|
50 |
+
!pip install openai==0.28.1, transformers
|
51 |
+
```
|
52 |
|
53 |
+
2. Load the model
|
54 |
|
55 |
+
```python
|
56 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
57 |
|
58 |
+
model_id = "mii-community/zefiro-functioncalling-v0.3-alpha"
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
60 |
+
model.to('cuda')
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
62 |
|
63 |
+
```
|
64 |
|
65 |
+
3. Prepare your data with a system prompt and an array of json openapi compatible: only the description key should be in Italian all the json in english a part all description keys.
|
66 |
|
67 |
+
```python
|
68 |
+
json_arr = [{"name": "order_dinner", "description": "Ordina una cena al ristorante", "parameters": {"type": "object", "properties": {"restaurant_name": {"type": "string", "description": "il nome del ristorante", "enum" : ['Bufalo Bill','Pazzas']}}, "required": ["restaurant_name"]}},
|
69 |
+
{"name": "get_weather", "description": "Ottieni le previsioni del tempo meteorologica", "parameters": {"type": "object", "properties": {"location": {"type": "string", "description": "Il nome del luogo "}}, "required": ["location"]}},
|
70 |
+
{"name": "create_product", "description": "Crea un prodotto da vendere", "parameters": {"type": "object", "properties": {"product_name": {"type": "string", "description": "Il nome del prodotto "}, "size": {"type": "string", "description": "la taglia del prodotto"}, "price": {"type": "integer", "description": "Il prezzo del prodotto "}}, "required": ["product_name", "size", "price"]}},
|
71 |
+
{"name": "get_news", "description": "Dammi le ultime notizie", "parameters": {"type": "object", "properties": {"argument": {"type": "string", "description": "L'argomento su cui fare la ricerca"}}, "required": ["argument"]}},
|
72 |
+
]
|
73 |
+
json_string = ' '.join([json.dumps(json_obj) for json_obj in json_arr])
|
74 |
+
system_prompt = 'Tu sei un assistenze utile che ha accesso alle seguenti funzioni. Usa le funzioni solo se necessario - \n ' + json_string + ' \n '
|
75 |
+
print(system_prompt)
|
76 |
|
77 |
+
test_message = [{'role' : 'system' , 'content' : system_prompt2},
|
78 |
+
{'role' : 'user' ,'content' : 'Crea un prodotto di nome AIR size L price 100'}]
|
79 |
+
```
|
80 |
|
81 |
+
4. Call the model
|
82 |
|
83 |
+
```python
|
84 |
+
def generate_text():
|
85 |
+
prompt = tokenizer.apply_chat_template(test_message, tokenize=False)
|
86 |
+
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
87 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=1024)
|
88 |
+
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
89 |
|
|
|
90 |
|
91 |
+
text_response = generate_text()
|
92 |
+
```
|
93 |
|
94 |
+
5. Parse the response
|
95 |
|
96 |
+
```python
|
97 |
+
FN_CALL_DELIMITER = "<<functioncall>>"
|
98 |
|
99 |
+
def strip_function_calls(content: str) -> list[str]:
|
100 |
+
"""
|
101 |
+
Split the content by the function call delimiter and remove empty strings
|
102 |
+
"""
|
103 |
+
return [element.replace('\n', '') for element in content.split(FN_CALL_DELIMITER)[1:] if element ]
|
104 |
|
|
|
105 |
|
106 |
+
functions_string = strip_function_calls(text_response)
|
107 |
|
108 |
+
# Output: [' {"name": "create_product", "arguments": \'{"product_name": "AIR", "size": "L", "price": 100}\'}']
|
109 |
+
```
|
110 |
|
111 |
+
6. Create an object representation of the string
|
112 |
|
113 |
+
```python
|
114 |
+
# if functions_string contains a function string create a json cleaning
|
115 |
+
# multiple functions not supported yet
|
116 |
+
if functions_string:
|
117 |
+
obj_to_call = json.loads(functions_string[0].replace('\'', ''))
|
118 |
+
else:
|
119 |
+
print('nothing to do or return a normal chat response')
|
120 |
|
121 |
+
# Output: {'name': 'create_product', 'arguments': {'product_name': 'AIR', 'size': 'L', 'price': 100}}
|
122 |
+
```
|
123 |
|
|
|
124 |
|
125 |
+
7. Prepare data to be OpenAI compatible
|
126 |
+
|
127 |
+
```python
|
128 |
+
def obj_to_func(obj):
|
129 |
+
arguments_keys = obj['arguments'].keys()
|
130 |
+
params = []
|
131 |
+
for key in arguments_keys:
|
132 |
+
param = f'{key}=\"{obj["arguments"][key]}\"'
|
133 |
+
params.append(param)
|
134 |
+
func_params = ','.join(params)
|
135 |
+
print(f'{obj["name"]}({func_params})')
|
136 |
+
return f'{obj["name"]}({func_params})'
|
137 |
|
138 |
+
func_str = obj_to_func(obj_to_call)
|
139 |
|
140 |
+
openai_response = {
|
141 |
+
"index": 0,
|
142 |
+
"message": {
|
143 |
+
"role": "assistant",
|
144 |
+
"content": func_str,
|
145 |
+
"function_call": [
|
146 |
+
obj_to_call
|
147 |
+
]
|
148 |
+
},
|
149 |
+
"finish_reason": "stop"
|
150 |
+
}
|
151 |
|
152 |
|
153 |
+
'''
|
154 |
+
Output OpenAI compatible Dictionary
|
155 |
+
{'index': 0,
|
156 |
+
'message': {
|
157 |
+
'role': 'assistant',
|
158 |
+
'content': 'create_product(product_name="AIR",size="L",price="100")',
|
159 |
+
'function_call': [{'name': 'create_product', 'arguments': {'product_name': 'AIR', 'size': 'L', 'price': 100}}]
|
160 |
+
},
|
161 |
+
'finish_reason': 'stop'
|
162 |
+
}
|
163 |
+
'''
|
164 |
+
```
|
165 |
|
166 |
+
JSON to be OpenAI compatible.
|
167 |
+
|
168 |
+
## Limitation
|
169 |
+
The model has some bug and some unexpected behaviour for example the more json you pass the less accurate it become filling the json output but
|
170 |
+
the interesting thing is that those are pattern that i did not consider in the data. It will be enough to improove the cases in the data to fix the bugs.
|
171 |
+
Stay tuned for a better version soon.
|
172 |
|
|
|
173 |
|
174 |
+
## License
|
175 |
|
176 |
+
Zefiro-functioncalling is distributed under the Apache 2.0 license as the base model Gorilla-LLM v0.2. This software incorporates elements from the Deepseek model. Consequently, the licensing of Gorilla OpenFunctions v2 adheres to the Apache 2.0 license, with additional terms as outlined in [Appendix A](https://github.com/deepseek-ai/DeepSeek-LLM/blob/6712a86bfb7dd25c73383c5ad2eb7a8db540258b/LICENSE-MODEL) of the Deepseek license.
|
177 |
|
178 |
+
## Contributing
|
179 |
+
Please email us your comments, criticism, and questions. More information about the project can be found at [https://zefiro.ai](https://zefiro.ai)
|
180 |
|
|
|
181 |
|
182 |
+
## Citation
|
183 |
+
This work is based on Gorilla an open source effort from UC Berkeley and we welcome contributors.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|