File size: 2,512 Bytes
dd74c6d
 
 
 
f9ef14f
459c365
 
f9ef14f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04873a5
 
d2d0116
dd74c6d
d2d0116
 
6cd5136
d2d0116
 
04873a5
d2d0116
b0d0138
d2d0116
 
b0d0138
 
d2d0116
b0d0138
 
d2d0116
b0d0138
d2d0116
 
 
b0d0138
d2d0116
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torch.nn as nn
import random
from huggingface_hub import PyTorchModelHubMixin

class LSTMTextGenerator(nn.Module, PyTorchModelHubMixin):
    def __init__(self, input_size=45, hidden_size=512, output_size=45, num_layers=2, dropout=0.5):
        super(LSTMTextGenerator, self).__init__()
        self.embedding = nn.Embedding(input_size, hidden_size)
        self.lstm = nn.LSTM(hidden_size, hidden_size, num_layers, batch_first=True, dropout=dropout, bidirectional=False)
        self.fc = nn.Linear(hidden_size, output_size)
        self.num_layers = num_layers
        self.hidden_size = hidden_size

    def forward(self, x, hidden):
        x = x.to(torch.long)
        x = self.embedding(x)
        x, hidden = self.lstm(x, hidden)
        x = self.fc(x)
        return x, hidden

    def init_hidden(self, batch_size):
        return (torch.zeros(self.num_layers, batch_size, self.hidden_size).to(device),
                torch.zeros(self.num_layers, batch_size, self.hidden_size).to(device))
        

class PreTrainedPipeline():
    def __init__(self, path=""):
        self.model = LSTMTextGenerator.from_pretrained("miittnnss/lstm-textgen-pets")
        self.chars = "!',.;ACDFGHIMORSTWabcdefghijklmnopqrstuvwxy"
        self.char_to_index = {char: index for index, char in enumerate(self.chars)}
        self.index_to_char = {index: char for char, index in self.char_to_index.items()}
        self.output_size = len(self.chars)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    def __call__(self, inputs: str):
        seed_numerical_data = [self.char_to_index[char] for char in inputs]
        with torch.no_grad():
            input_sequence = torch.LongTensor([seed_numerical_data]).to(self.device)
            hidden = self.model.init_hidden(1)

            generated_text = inputs  # Initialize generated text with seed text
            temperature = 0.7  # Temperature for temperature sampling

            for _ in range(500):
                output, hidden = self.model(input_sequence, hidden)
                probabilities = nn.functional.softmax(output[-1, 0] / temperature, dim=0).cpu().numpy()
                predicted_index = random.choices(range(self.output_size), weights=probabilities, k=1)[0]
                generated_text += self.index_to_char[predicted_index]  # Append the generated character to the text
                input_sequence = torch.LongTensor([[predicted_index]]).to(self.device)

        return generated_text