File size: 2,697 Bytes
8df1d79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: bert-base-cased-samsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
      args: samsum
    metrics:
    - name: Rouge1
      type: rouge
      value: 34.9636
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-cased-samsum

This model is a fine-tuned version of [](https://huggingface.co/) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7369
- Rouge1: 34.9636
- Rouge2: 10.6358
- Rougel: 27.6003
- Rougelsum: 30.9654
- Gen Len: 17.6020

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 36
- eval_batch_size: 36
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 410  | 2.9218          | 29.2936 | 7.4008  | 23.9609 | 26.3194   | 17.2332 |
| 2.6834        | 2.0   | 820  | 2.7635          | 31.9826 | 8.9758  | 26.1311 | 28.7458   | 16.9866 |
| 2.3529        | 3.0   | 1230 | 2.7369          | 34.9636 | 10.6358 | 27.6003 | 30.9654   | 17.6020 |
| 1.9608        | 4.0   | 1640 | 2.7711          | 35.8322 | 11.3676 | 29.0276 | 32.2881   | 16.9133 |
| 1.6459        | 5.0   | 2050 | 2.7832          | 36.8688 | 11.8883 | 29.3721 | 32.8683   | 17.0879 |
| 1.6459        | 6.0   | 2460 | 2.8334          | 36.489  | 11.5372 | 29.2263 | 32.5406   | 17.8901 |
| 1.3791        | 7.0   | 2870 | 2.8767          | 37.0743 | 11.8554 | 29.4063 | 32.7543   | 17.6093 |
| 1.1687        | 8.0   | 3280 | 2.9232          | 37.2    | 11.8723 | 29.5194 | 32.9481   | 17.6581 |
| 1.0249        | 9.0   | 3690 | 2.9456          | 37.1872 | 12.0958 | 29.621  | 33.0073   | 17.8840 |
| 0.9259        | 10.0  | 4100 | 2.9719          | 37.1213 | 12.1068 | 29.5138 | 33.0372   | 17.8278 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1