mindwrapped
commited on
Commit
•
00a0dd5
1
Parent(s):
048a4bc
Upload PPO BipedalWalker-v3 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-BipedalWalker-v3.zip +3 -0
- ppo-BipedalWalker-v3/_stable_baselines3_version +1 -0
- ppo-BipedalWalker-v3/data +99 -0
- ppo-BipedalWalker-v3/policy.optimizer.pth +3 -0
- ppo-BipedalWalker-v3/policy.pth +3 -0
- ppo-BipedalWalker-v3/pytorch_variables.pth +3 -0
- ppo-BipedalWalker-v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 124.81 +/- 107.79
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: BipedalWalker-v3
|
20 |
+
type: BipedalWalker-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac5c6968c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac5c696950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac5c6969e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac5c696a70>", "_build": "<function ActorCriticPolicy._build at 0x7fac5c696b00>", "forward": "<function ActorCriticPolicy.forward at 0x7fac5c696b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac5c696c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac5c696cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac5c696d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac5c696dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac5c696e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fac5c6d7d50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVRQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVfQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1500000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652224753.5813951, "learning_rate": 0.0003, "tensorboard_log": "runs/35k6q2p3", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAOpEz+RRA89KS6PPkApxL1pOVG/AABwtKS2h779/38/AAAAAHQNHz8YGZ29PMPCvgEAgD8AAAAAm9mnPnjMqz42V7M+3kW+PgSJ0T6f5+0+++sNP4rXOD/Rnn4/AACAP9kS/jxOHBm+lTqwPgOkUz13kD+/igBWP0nKBT+gzDE+AAAAAFQLnT+BnLc/+EicPgMAgL8AAAAAmTeYPiLymT5tXKA+NFmrPh8Nuj7vhc4+QRftPk5FEj/bGVk/AACAP4VfID9tjr+97ISdPgjBGjzU21G/wOnDPYAxj70IxrI+AACAPxMpeD/7/3+/JJtzPwMAgD8AAAAAEYGcPu29nT78nKM+7YyuPvKLvj6rHNg+F1v/PpZLHT/P9Fg/AACAP4hJD77RTL8869hUPqXuHD4argy/5xoWPra80D4AAIC/AAAAAOg0kT8AAAAAOR4oPxHYLL8AAIA/bLCkPu7bpz48I68+T7y6PmIIzj4BSeo+P+sMP5o1ND9E5nk/AACAP3PgRD6xKLM9p8G1PgzqI7zo4j+/zPmxvrBoz777/3+/AAAAABifSj9E4hU+cPnAvgEAgL8AAIA/PSi/PnxgxD67Lcw+0A/aPq6o8j5I+Ak/sk0iPw42Sj8AAIA/AACAP4qwVD4swi49pqcVPnWskj35aiy/KACAP4TbTz78/3+/AAAAAM+djT/n/38/UI2sPRQAgL8AAAAA1uSxPgbqsz4WiLg+pOfBPjE/0T58Buc+868DP2kPHz+3ZVk/AACAP203Gz4PlhE+HqEiPiwqvD164TG/mwM0v7DB/D0BAIC/AAAAAFLuTD9/Jwi/AgsIP/v/f78AAIA/jFe/Ppz2wT4tM8g+DUzSPrSU4T71UPw+EkoQPwfeKz+jsmQ/AACAP0lIkD4YnVy8cxBWPnGh3jutYla/+/9/v0CvQzwBAIA/AAAAAN4Bgz/Q3qg7wLGVPimb178AAAAAp7GPPmlTkT5xaZY+qJSfPooarj7/YsQ+CCrnPjplED/ARkY/AACAP9yTGz8taN29qzQ1PmSFFr1olUa/zjr2Pvgpu74r2vk7AACAPxuvjT8AAAAAMoZTPwEAgD8AAAAA/yuQPhCMkz78e5o+N9alPlb0sz5Wdso+UgnsPo1RDz+W6Tg/AACAPwASQT+7tjQ9ZSxOPp2Ejr2Rdki/ZiqcPmAEAr79/38/AAAAAL1UVj6DYwA/MaxmP6uqKjMAAAAAs4G7PjPpvD43JsM+kgvPPpBh4j7MCAA/RXIaP2EARz8AAIA/AACAP37bOT+E5lm9jmlMPiii+jwoPE+/wBs+PKwT5773Dls+AACAP7EZhD960Z0+JFloP6Bfh7oAAAAAAxaKPkaBjD6MYpI+06mePud9sT6348w+TTXxPgbREz9inkk/AACAP9cOnr2fScU8lpkhPouMGD6pRky/WYGcPuWuZT+UCwq/AAAAAKdEkT8AAFw2KyBfP8VVC78AAIA/7JuhPgaNoD611qE+k9umPnFFsj5vXMY+Ht/oPs14Dz91Ckc/AACAP6iTvz4MA9k9BFEbPq0ykDzOvFW/AACANKBOJ74BAIC/AAAAAG14Mj8BAIC/wHx2vm+0r74AAAAAr67CPvxfwT4oycQ+FJbMPqJP2j62N/E+zscKP6ksLD/MsGU/AACAPxEwDz8u8t49/GcXPl8/P729lU6/+MtvvrBkgb78/3+/AAAAAFpnHD8OXx2/kLP+PgEAgD8AAAAAxlScPmx+nj5uCqQ+t4OxPhEKxz4Uwec+w5gOP+/7Pj8AAIA/AACAPzishj4sltu9CGLIPSMRAbzV5Tu/OCAAP0Caybwwm+c9AACAPw3QlT+SqIE/6v0UPwAAgL8AAAAACjCBPvKQgj4lr4g+WUaTPuF7pT43qsM+A2D4Ph5/Hz9bsGI/AACAP0tZ4D32pfE96M+CPsZqjj2YyK++THozvhCYiD0BAIC/AAAAAAdrPz8AAIC/0LTUvQEAgL8AAAAAt8TOPiKv0T6VTdo+ClroPrcR/T6Itg4/Jn0mP0JkST8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.7018112000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOjyE8dOiXkCUhpRSlIwBbJRNQAaMAXSUR0CQxzRhttQ9dX2UKGgGaAloD0MIYp0q3zPYQMCUhpRSlGgVTWwDaBZHQJDh0snRb8p1fZQoaAZoCWgPQwg3T3XITQxgQJSGlFKUaBVNQAZoFkdAkOIfR7Z393V9lChoBmgJaA9DCGRbBpylmF1AlIaUUpRoFU1ABmgWR0CQ4jV/+bVjdX2UKGgGaAloD0MIzefc7XpaVcCUhpRSlGgVTUYBaBZHQJDixNet0V91fZQoaAZoCWgPQwgTgeofRF5gQJSGlFKUaBVNQAZoFkdAkOTxxDLKWHV9lChoBmgJaA9DCEfJq3MMuFxAlIaUUpRoFU1ABmgWR0CQ5cOp84PxdX2UKGgGaAloD0MIi98UVir0PcCUhpRSlGgVTT8DaBZHQJDl8X0oSct1fZQoaAZoCWgPQwhxWvCir29eQJSGlFKUaBVNQAZoFkdAkOcD3/Pw/nV9lChoBmgJaA9DCF9hwf2ATVtAlIaUUpRoFU1ABmgWR0CQ6Gl7dBSldX2UKGgGaAloD0MIISI17WIvWcCUhpRSlGgVS1RoFkdAkOq8/QjUu3V9lChoBmgJaA9DCCjwTj49ljzAlIaUUpRoFU31A2gWR0CQ6uUypJf6dX2UKGgGaAloD0MI7FG4HoWFYUCUhpRSlGgVTUAGaBZHQJDu7VLBbfR1fZQoaAZoCWgPQwiaJJaUuxxgQJSGlFKUaBVNQAZoFkdAkPDQlSjxkXV9lChoBmgJaA9DCC8xlumXI1DAlIaUUpRoFU0gAmgWR0CQ8P+PBBRidX2UKGgGaAloD0MI8bioFpHJYECUhpRSlGgVTUAGaBZHQJD4iQFLWZt1fZQoaAZoCWgPQwjs+C8QBBxgQJSGlFKUaBVNQAZoFkdAkQ+DE74i5nV9lChoBmgJaA9DCJoHsMivI15AlIaUUpRoFU1ABmgWR0CRD/32mHgxdX2UKGgGaAloD0MIEYyDS8fcNsCUhpRSlGgVTe8DaBZHQJEQ5k+X7ch1fZQoaAZoCWgPQwjg2omSkDQ5wJSGlFKUaBVNtgNoFkdAkRIZzcRDkXV9lChoBmgJaA9DCJdSl4xjh1DAlIaUUpRoFU2WAmgWR0CRFEU8FINFdX2UKGgGaAloD0MIl4v4TsxOXkCUhpRSlGgVTUAGaBZHQJEZP0th/iJ1fZQoaAZoCWgPQwjy0He3skQSQJSGlFKUaBVNZgVoFkdAkT5MvmHP/3V9lChoBmgJaA9DCEljtI6q8EXAlIaUUpRoFU3wA2gWR0CRPxRIBikPdX2UKGgGaAloD0MIIPEr1nBAX0CUhpRSlGgVTUAGaBZHQJFAPTPSlWR1fZQoaAZoCWgPQwifceFASJpXQJSGlFKUaBVNQAZoFkdAkUEl3MY/FHV9lChoBmgJaA9DCIOHad/cwljAlIaUUpRoFUtCaBZHQJFCD1lGwzN1fZQoaAZoCWgPQwiyEB0CR4IhQJSGlFKUaBVNcgVoFkdAkUOaYJE6UHV9lChoBmgJaA9DCFEWvr7WVRPAlIaUUpRoFU2WBGgWR0CRQ8MSK3uvdX2UKGgGaAloD0MIyhZJu9GVWkCUhpRSlGgVTUAGaBZHQJFEUvXbudB1fZQoaAZoCWgPQwjjNEQV/pA9wJSGlFKUaBVNkQNoFkdAkURc6q8143V9lChoBmgJaA9DCNbG2AkvbFrAlIaUUpRoFUvOaBZHQJFEqjZcs191fZQoaAZoCWgPQwj7ko0HW5pfQJSGlFKUaBVNQAZoFkdAkUVpL26ClXV9lChoBmgJaA9DCBmPUglPSlXAlIaUUpRoFU0JAWgWR0CRRXGQSzw+dX2UKGgGaAloD0MIGoo73uSqXECUhpRSlGgVTUAGaBZHQJFJCf7Jnxt1fZQoaAZoCWgPQwj/PA0YJAxSwJSGlFKUaBVNKAFoFkdAkUoSvHLidnV9lChoBmgJaA9DCL7Z5sb0FFnAlIaUUpRoFUt+aBZHQJFfx97Wuox1fZQoaAZoCWgPQwh3hxQDJEhVwJSGlFKUaBVNUwFoFkdAkWDIk/r0KHV9lChoBmgJaA9DCJNzYg/tNVPAlIaUUpRoFU23AWgWR0CRY8Ft8/lidX2UKGgGaAloD0MIaJWZ0vorTMCUhpRSlGgVTTcCaBZHQJFnE9s7+1l1fZQoaAZoCWgPQwirB8xDplQhwJSGlFKUaBVNEwRoFkdAkWhZ+H8CP3V9lChoBmgJaA9DCDpBmxw+zFxAlIaUUpRoFU1ABmgWR0CRbdzKs+3ZdX2UKGgGaAloD0MISL99HThMYECUhpRSlGgVTUAGaBZHQJFuXizcAR11fZQoaAZoCWgPQwize/KwUNZfQJSGlFKUaBVNQAZoFkdAkW9ETURWcXV9lChoBmgJaA9DCO2d0ValkmBAlIaUUpRoFU1ABmgWR0CRcGwgTyrgdX2UKGgGaAloD0MIkL3e/XEXYUCUhpRSlGgVTUAGaBZHQJFyec6Nly11fZQoaAZoCWgPQwgdIm5OJQdYwJSGlFKUaBVLjWgWR0CRdjWvKU3XdX2UKGgGaAloD0MIHHxhMlUgVMCUhpRSlGgVTQ4BaBZHQJF2c9HMEA51fZQoaAZoCWgPQwimCkYldcIUQJSGlFKUaBVNrwVoFkdAkZGXf/FR53V9lChoBmgJaA9DCNQMqaJ4mVHAlIaUUpRoFU0MAmgWR0CRkbysS00FdX2UKGgGaAloD0MIHt/eNeg3WkCUhpRSlGgVTUAGaBZHQJGS7GDL8rJ1fZQoaAZoCWgPQwjqB3WRQg9NwJSGlFKUaBVNnAJoFkdAkZOfHYHxBnV9lChoBmgJaA9DCJi9bDttQ19AlIaUUpRoFU1ABmgWR0CRlWbJfYz0dX2UKGgGaAloD0MIAqCKG7ecQMCUhpRSlGgVTWMEaBZHQJGVco2GZeB1fZQoaAZoCWgPQwgQeGAA4SBbQJSGlFKUaBVNQAZoFkdAkZcyHRCx/3V9lChoBmgJaA9DCNqs+lxtDFZAlIaUUpRoFU1ABmgWR0CRlzrVe8f3dX2UKGgGaAloD0MIhZZ1/1g6WkCUhpRSlGgVTUAGaBZHQJGb0OkLx7R1fZQoaAZoCWgPQwgCoIobNxtgQJSGlFKUaBVNQAZoFkdAkZ4mHLzPKXV9lChoBmgJaA9DCCqRRC+jw19AlIaUUpRoFU1ABmgWR0CRny8FpwjudX2UKGgGaAloD0MIyxMIO8VKIMCUhpRSlGgVTfoFaBZHQJGkrtgKF7F1fZQoaAZoCWgPQwhzuFZ72F9dQJSGlFKUaBVNQAZoFkdAkaVlFUhmoXV9lChoBmgJaA9DCO58PzVelWJAlIaUUpRoFU1ABmgWR0CRv7Vlf7aadX2UKGgGaAloD0MIr0M1JVk3NcCUhpRSlGgVTUgEaBZHQJHGeACnxax1fZQoaAZoCWgPQwgUWtb9Y39bQJSGlFKUaBVNQAZoFkdAkcgfcer+53V9lChoBmgJaA9DCHMuxVVl9F9AlIaUUpRoFU1ABmgWR0CRyGFGoaUBdX2UKGgGaAloD0MI6kDWU6vcXECUhpRSlGgVTUAGaBZHQJHQI4//vOR1fZQoaAZoCWgPQwhkdha9U11YQJSGlFKUaBVNQAZoFkdAkdBIfGMn7nV9lChoBmgJaA9DCDDa44X0jWBAlIaUUpRoFU1ABmgWR0CR0YLV4HHFdX2UKGgGaAloD0MIv9alRuh6WkCUhpRSlGgVTUAGaBZHQJHSKGj9GZx1fZQoaAZoCWgPQwjmCBnIs5JWQJSGlFKUaBVNQAZoFkdAkdP7SNOuaHV9lChoBmgJaA9DCNbh6CrdM1nAlIaUUpRoFUtwaBZHQJHVNBF/hEV1fZQoaAZoCWgPQwihZd0/FvJawJSGlFKUaBVLOWgWR0CR1X/TLGJfdX2UKGgGaAloD0MIGcVyS6u+WkCUhpRSlGgVTUAGaBZHQJHVyQSzw+d1fZQoaAZoCWgPQwhKea2E7utYQJSGlFKUaBVNQAZoFkdAkdXR4Uvf0nV9lChoBmgJaA9DCHRC6KBLhlTAlIaUUpRoFU0VAmgWR0CR1m3solUqdX2UKGgGaAloD0MIQQ+1bRgzXECUhpRSlGgVTUAGaBZHQJHt/IFNcnp1fZQoaAZoCWgPQwjON6J71ttaQJSGlFKUaBVNQAZoFkdAkfBrJ8v25HV9lChoBmgJaA9DCLnjTX6LTVxAlIaUUpRoFU1ABmgWR0CR8YDGtITXdX2UKGgGaAloD0MIURVT6SefWcCUhpRSlGgVS0hoFkdAkfJqGlANX3V9lChoBmgJaA9DCO84RUdyPVVAlIaUUpRoFU1ABmgWR0CR9wMhHLA6dX2UKGgGaAloD0MIMsaH2ctyWkCUhpRSlGgVTUAGaBZHQJH3ssTWXkZ1fZQoaAZoCWgPQwiKWppbIRpZQJSGlFKUaBVNQAZoFkdAkf5us1baAXV9lChoBmgJaA9DCFn60AX1fllAlIaUUpRoFU1ABmgWR0CSBRi6xxDLdX2UKGgGaAloD0MIbeUl/5MgWECUhpRSlGgVTUAGaBZHQJIacWl/H5t1fZQoaAZoCWgPQwgz/KcbKLxBwJSGlFKUaBVNwANoFkdAkhtOdoWYW3V9lChoBmgJaA9DCEONQpJZHlTAlIaUUpRoFU3EAWgWR0CSHgxeb/fgdX2UKGgGaAloD0MIGJY/3xb/WECUhpRSlGgVTUAGaBZHQJIiTyVfNRp1fZQoaAZoCWgPQwivBigNNfdZQJSGlFKUaBVNQAZoFkdAkiJzdxhlUnV9lChoBmgJaA9DCBiV1AloEV1AlIaUUpRoFU1ABmgWR0CSI6mxdIGydX2UKGgGaAloD0MI21Gco45FXUCUhpRSlGgVTUAGaBZHQJInWxX4j8l1fZQoaAZoCWgPQwgfgNQmTj5eQJSGlFKUaBVNQAZoFkdAkieoN7SiNHV9lChoBmgJaA9DCL3jFB3JQ1hAlIaUUpRoFU1ABmgWR0CSJ/Jgb6xgdX2UKGgGaAloD0MI36mAe554XECUhpRSlGgVTUAGaBZHQJIn+tr9ETh1fZQoaAZoCWgPQwjaHVIMkEFeQJSGlFKUaBVNQAZoFkdAkiifIbOu73V9lChoBmgJaA9DCGMJa2PsMFbAlIaUUpRoFUvhaBZHQJIuGLBKtgd1fZQoaAZoCWgPQwjlub4PBzFdQJSGlFKUaBVNQAZoFkdAkjAPt6X0G3V9lChoBmgJaA9DCCuJ7IMsdl9AlIaUUpRoFU1ABmgWR0CSMPS/j81odX2UKGgGaAloD0MIc/T4vU2hWkCUhpRSlGgVTUAGaBZHQJI1d26kIop1fZQoaAZoCWgPQwg6zm3CvZddQJSGlFKUaBVNQAZoFkdAkkmK+WWyDHV9lChoBmgJaA9DCK8l5IOevF1AlIaUUpRoFU1ABmgWR0CSVvg2Ifr9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 364, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24fd084e9b0a1e70ab8e244d849e2857a62baa5341053b143024e33b4ea92f88
|
3 |
+
size 171954
|
ppo-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fac5c6968c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac5c696950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac5c6969e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac5c696a70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fac5c696b00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fac5c696b90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac5c696c20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fac5c696cb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac5c696d40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac5c696dd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac5c696e60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fac5c6d7d50>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVRQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
24
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVfQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
4
|
42 |
+
],
|
43 |
+
"low": "[-1. -1. -1. -1.]",
|
44 |
+
"high": "[1. 1. 1. 1.]",
|
45 |
+
"bounded_below": "[ True True True True]",
|
46 |
+
"bounded_above": "[ True True True True]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"n_envs": 16,
|
50 |
+
"num_timesteps": 1500000,
|
51 |
+
"_total_timesteps": 5000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": null,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1652224753.5813951,
|
56 |
+
"learning_rate": 0.0003,
|
57 |
+
"tensorboard_log": "runs/35k6q2p3",
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAOpEz+RRA89KS6PPkApxL1pOVG/AABwtKS2h779/38/AAAAAHQNHz8YGZ29PMPCvgEAgD8AAAAAm9mnPnjMqz42V7M+3kW+PgSJ0T6f5+0+++sNP4rXOD/Rnn4/AACAP9kS/jxOHBm+lTqwPgOkUz13kD+/igBWP0nKBT+gzDE+AAAAAFQLnT+BnLc/+EicPgMAgL8AAAAAmTeYPiLymT5tXKA+NFmrPh8Nuj7vhc4+QRftPk5FEj/bGVk/AACAP4VfID9tjr+97ISdPgjBGjzU21G/wOnDPYAxj70IxrI+AACAPxMpeD/7/3+/JJtzPwMAgD8AAAAAEYGcPu29nT78nKM+7YyuPvKLvj6rHNg+F1v/PpZLHT/P9Fg/AACAP4hJD77RTL8869hUPqXuHD4argy/5xoWPra80D4AAIC/AAAAAOg0kT8AAAAAOR4oPxHYLL8AAIA/bLCkPu7bpz48I68+T7y6PmIIzj4BSeo+P+sMP5o1ND9E5nk/AACAP3PgRD6xKLM9p8G1PgzqI7zo4j+/zPmxvrBoz777/3+/AAAAABifSj9E4hU+cPnAvgEAgL8AAIA/PSi/PnxgxD67Lcw+0A/aPq6o8j5I+Ak/sk0iPw42Sj8AAIA/AACAP4qwVD4swi49pqcVPnWskj35aiy/KACAP4TbTz78/3+/AAAAAM+djT/n/38/UI2sPRQAgL8AAAAA1uSxPgbqsz4WiLg+pOfBPjE/0T58Buc+868DP2kPHz+3ZVk/AACAP203Gz4PlhE+HqEiPiwqvD164TG/mwM0v7DB/D0BAIC/AAAAAFLuTD9/Jwi/AgsIP/v/f78AAIA/jFe/Ppz2wT4tM8g+DUzSPrSU4T71UPw+EkoQPwfeKz+jsmQ/AACAP0lIkD4YnVy8cxBWPnGh3jutYla/+/9/v0CvQzwBAIA/AAAAAN4Bgz/Q3qg7wLGVPimb178AAAAAp7GPPmlTkT5xaZY+qJSfPooarj7/YsQ+CCrnPjplED/ARkY/AACAP9yTGz8taN29qzQ1PmSFFr1olUa/zjr2Pvgpu74r2vk7AACAPxuvjT8AAAAAMoZTPwEAgD8AAAAA/yuQPhCMkz78e5o+N9alPlb0sz5Wdso+UgnsPo1RDz+W6Tg/AACAPwASQT+7tjQ9ZSxOPp2Ejr2Rdki/ZiqcPmAEAr79/38/AAAAAL1UVj6DYwA/MaxmP6uqKjMAAAAAs4G7PjPpvD43JsM+kgvPPpBh4j7MCAA/RXIaP2EARz8AAIA/AACAP37bOT+E5lm9jmlMPiii+jwoPE+/wBs+PKwT5773Dls+AACAP7EZhD960Z0+JFloP6Bfh7oAAAAAAxaKPkaBjD6MYpI+06mePud9sT6348w+TTXxPgbREz9inkk/AACAP9cOnr2fScU8lpkhPouMGD6pRky/WYGcPuWuZT+UCwq/AAAAAKdEkT8AAFw2KyBfP8VVC78AAIA/7JuhPgaNoD611qE+k9umPnFFsj5vXMY+Ht/oPs14Dz91Ckc/AACAP6iTvz4MA9k9BFEbPq0ykDzOvFW/AACANKBOJ74BAIC/AAAAAG14Mj8BAIC/wHx2vm+0r74AAAAAr67CPvxfwT4oycQ+FJbMPqJP2j62N/E+zscKP6ksLD/MsGU/AACAPxEwDz8u8t49/GcXPl8/P729lU6/+MtvvrBkgb78/3+/AAAAAFpnHD8OXx2/kLP+PgEAgD8AAAAAxlScPmx+nj5uCqQ+t4OxPhEKxz4Uwec+w5gOP+/7Pj8AAIA/AACAPzishj4sltu9CGLIPSMRAbzV5Tu/OCAAP0Caybwwm+c9AACAPw3QlT+SqIE/6v0UPwAAgL8AAAAACjCBPvKQgj4lr4g+WUaTPuF7pT43qsM+A2D4Ph5/Hz9bsGI/AACAP0tZ4D32pfE96M+CPsZqjj2YyK++THozvhCYiD0BAIC/AAAAAAdrPz8AAIC/0LTUvQEAgL8AAAAAt8TOPiKv0T6VTdo+ClroPrcR/T6Itg4/Jn0mP0JkST8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
65 |
+
},
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
69 |
+
},
|
70 |
+
"_last_original_obs": null,
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.7018112000000001,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOjyE8dOiXkCUhpRSlIwBbJRNQAaMAXSUR0CQxzRhttQ9dX2UKGgGaAloD0MIYp0q3zPYQMCUhpRSlGgVTWwDaBZHQJDh0snRb8p1fZQoaAZoCWgPQwg3T3XITQxgQJSGlFKUaBVNQAZoFkdAkOIfR7Z393V9lChoBmgJaA9DCGRbBpylmF1AlIaUUpRoFU1ABmgWR0CQ4jV/+bVjdX2UKGgGaAloD0MIzefc7XpaVcCUhpRSlGgVTUYBaBZHQJDixNet0V91fZQoaAZoCWgPQwgTgeofRF5gQJSGlFKUaBVNQAZoFkdAkOTxxDLKWHV9lChoBmgJaA9DCEfJq3MMuFxAlIaUUpRoFU1ABmgWR0CQ5cOp84PxdX2UKGgGaAloD0MIi98UVir0PcCUhpRSlGgVTT8DaBZHQJDl8X0oSct1fZQoaAZoCWgPQwhxWvCir29eQJSGlFKUaBVNQAZoFkdAkOcD3/Pw/nV9lChoBmgJaA9DCF9hwf2ATVtAlIaUUpRoFU1ABmgWR0CQ6Gl7dBSldX2UKGgGaAloD0MIISI17WIvWcCUhpRSlGgVS1RoFkdAkOq8/QjUu3V9lChoBmgJaA9DCCjwTj49ljzAlIaUUpRoFU31A2gWR0CQ6uUypJf6dX2UKGgGaAloD0MI7FG4HoWFYUCUhpRSlGgVTUAGaBZHQJDu7VLBbfR1fZQoaAZoCWgPQwiaJJaUuxxgQJSGlFKUaBVNQAZoFkdAkPDQlSjxkXV9lChoBmgJaA9DCC8xlumXI1DAlIaUUpRoFU0gAmgWR0CQ8P+PBBRidX2UKGgGaAloD0MI8bioFpHJYECUhpRSlGgVTUAGaBZHQJD4iQFLWZt1fZQoaAZoCWgPQwjs+C8QBBxgQJSGlFKUaBVNQAZoFkdAkQ+DE74i5nV9lChoBmgJaA9DCJoHsMivI15AlIaUUpRoFU1ABmgWR0CRD/32mHgxdX2UKGgGaAloD0MIEYyDS8fcNsCUhpRSlGgVTe8DaBZHQJEQ5k+X7ch1fZQoaAZoCWgPQwjg2omSkDQ5wJSGlFKUaBVNtgNoFkdAkRIZzcRDkXV9lChoBmgJaA9DCJdSl4xjh1DAlIaUUpRoFU2WAmgWR0CRFEU8FINFdX2UKGgGaAloD0MIl4v4TsxOXkCUhpRSlGgVTUAGaBZHQJEZP0th/iJ1fZQoaAZoCWgPQwjy0He3skQSQJSGlFKUaBVNZgVoFkdAkT5MvmHP/3V9lChoBmgJaA9DCEljtI6q8EXAlIaUUpRoFU3wA2gWR0CRPxRIBikPdX2UKGgGaAloD0MIIPEr1nBAX0CUhpRSlGgVTUAGaBZHQJFAPTPSlWR1fZQoaAZoCWgPQwifceFASJpXQJSGlFKUaBVNQAZoFkdAkUEl3MY/FHV9lChoBmgJaA9DCIOHad/cwljAlIaUUpRoFUtCaBZHQJFCD1lGwzN1fZQoaAZoCWgPQwiyEB0CR4IhQJSGlFKUaBVNcgVoFkdAkUOaYJE6UHV9lChoBmgJaA9DCFEWvr7WVRPAlIaUUpRoFU2WBGgWR0CRQ8MSK3uvdX2UKGgGaAloD0MIyhZJu9GVWkCUhpRSlGgVTUAGaBZHQJFEUvXbudB1fZQoaAZoCWgPQwjjNEQV/pA9wJSGlFKUaBVNkQNoFkdAkURc6q8143V9lChoBmgJaA9DCNbG2AkvbFrAlIaUUpRoFUvOaBZHQJFEqjZcs191fZQoaAZoCWgPQwj7ko0HW5pfQJSGlFKUaBVNQAZoFkdAkUVpL26ClXV9lChoBmgJaA9DCBmPUglPSlXAlIaUUpRoFU0JAWgWR0CRRXGQSzw+dX2UKGgGaAloD0MIGoo73uSqXECUhpRSlGgVTUAGaBZHQJFJCf7Jnxt1fZQoaAZoCWgPQwj/PA0YJAxSwJSGlFKUaBVNKAFoFkdAkUoSvHLidnV9lChoBmgJaA9DCL7Z5sb0FFnAlIaUUpRoFUt+aBZHQJFfx97Wuox1fZQoaAZoCWgPQwh3hxQDJEhVwJSGlFKUaBVNUwFoFkdAkWDIk/r0KHV9lChoBmgJaA9DCJNzYg/tNVPAlIaUUpRoFU23AWgWR0CRY8Ft8/lidX2UKGgGaAloD0MIaJWZ0vorTMCUhpRSlGgVTTcCaBZHQJFnE9s7+1l1fZQoaAZoCWgPQwirB8xDplQhwJSGlFKUaBVNEwRoFkdAkWhZ+H8CP3V9lChoBmgJaA9DCDpBmxw+zFxAlIaUUpRoFU1ABmgWR0CRbdzKs+3ZdX2UKGgGaAloD0MISL99HThMYECUhpRSlGgVTUAGaBZHQJFuXizcAR11fZQoaAZoCWgPQwize/KwUNZfQJSGlFKUaBVNQAZoFkdAkW9ETURWcXV9lChoBmgJaA9DCO2d0ValkmBAlIaUUpRoFU1ABmgWR0CRcGwgTyrgdX2UKGgGaAloD0MIkL3e/XEXYUCUhpRSlGgVTUAGaBZHQJFyec6Nly11fZQoaAZoCWgPQwgdIm5OJQdYwJSGlFKUaBVLjWgWR0CRdjWvKU3XdX2UKGgGaAloD0MIHHxhMlUgVMCUhpRSlGgVTQ4BaBZHQJF2c9HMEA51fZQoaAZoCWgPQwimCkYldcIUQJSGlFKUaBVNrwVoFkdAkZGXf/FR53V9lChoBmgJaA9DCNQMqaJ4mVHAlIaUUpRoFU0MAmgWR0CRkbysS00FdX2UKGgGaAloD0MIHt/eNeg3WkCUhpRSlGgVTUAGaBZHQJGS7GDL8rJ1fZQoaAZoCWgPQwjqB3WRQg9NwJSGlFKUaBVNnAJoFkdAkZOfHYHxBnV9lChoBmgJaA9DCJi9bDttQ19AlIaUUpRoFU1ABmgWR0CRlWbJfYz0dX2UKGgGaAloD0MIAqCKG7ecQMCUhpRSlGgVTWMEaBZHQJGVco2GZeB1fZQoaAZoCWgPQwgQeGAA4SBbQJSGlFKUaBVNQAZoFkdAkZcyHRCx/3V9lChoBmgJaA9DCNqs+lxtDFZAlIaUUpRoFU1ABmgWR0CRlzrVe8f3dX2UKGgGaAloD0MIhZZ1/1g6WkCUhpRSlGgVTUAGaBZHQJGb0OkLx7R1fZQoaAZoCWgPQwgCoIobNxtgQJSGlFKUaBVNQAZoFkdAkZ4mHLzPKXV9lChoBmgJaA9DCCqRRC+jw19AlIaUUpRoFU1ABmgWR0CRny8FpwjudX2UKGgGaAloD0MIyxMIO8VKIMCUhpRSlGgVTfoFaBZHQJGkrtgKF7F1fZQoaAZoCWgPQwhzuFZ72F9dQJSGlFKUaBVNQAZoFkdAkaVlFUhmoXV9lChoBmgJaA9DCO58PzVelWJAlIaUUpRoFU1ABmgWR0CRv7Vlf7aadX2UKGgGaAloD0MIr0M1JVk3NcCUhpRSlGgVTUgEaBZHQJHGeACnxax1fZQoaAZoCWgPQwgUWtb9Y39bQJSGlFKUaBVNQAZoFkdAkcgfcer+53V9lChoBmgJaA9DCHMuxVVl9F9AlIaUUpRoFU1ABmgWR0CRyGFGoaUBdX2UKGgGaAloD0MI6kDWU6vcXECUhpRSlGgVTUAGaBZHQJHQI4//vOR1fZQoaAZoCWgPQwhkdha9U11YQJSGlFKUaBVNQAZoFkdAkdBIfGMn7nV9lChoBmgJaA9DCDDa44X0jWBAlIaUUpRoFU1ABmgWR0CR0YLV4HHFdX2UKGgGaAloD0MIv9alRuh6WkCUhpRSlGgVTUAGaBZHQJHSKGj9GZx1fZQoaAZoCWgPQwjmCBnIs5JWQJSGlFKUaBVNQAZoFkdAkdP7SNOuaHV9lChoBmgJaA9DCNbh6CrdM1nAlIaUUpRoFUtwaBZHQJHVNBF/hEV1fZQoaAZoCWgPQwihZd0/FvJawJSGlFKUaBVLOWgWR0CR1X/TLGJfdX2UKGgGaAloD0MIGcVyS6u+WkCUhpRSlGgVTUAGaBZHQJHVyQSzw+d1fZQoaAZoCWgPQwhKea2E7utYQJSGlFKUaBVNQAZoFkdAkdXR4Uvf0nV9lChoBmgJaA9DCHRC6KBLhlTAlIaUUpRoFU0VAmgWR0CR1m3solUqdX2UKGgGaAloD0MIQQ+1bRgzXECUhpRSlGgVTUAGaBZHQJHt/IFNcnp1fZQoaAZoCWgPQwjON6J71ttaQJSGlFKUaBVNQAZoFkdAkfBrJ8v25HV9lChoBmgJaA9DCLnjTX6LTVxAlIaUUpRoFU1ABmgWR0CR8YDGtITXdX2UKGgGaAloD0MIURVT6SefWcCUhpRSlGgVS0hoFkdAkfJqGlANX3V9lChoBmgJaA9DCO84RUdyPVVAlIaUUpRoFU1ABmgWR0CR9wMhHLA6dX2UKGgGaAloD0MIMsaH2ctyWkCUhpRSlGgVTUAGaBZHQJH3ssTWXkZ1fZQoaAZoCWgPQwiKWppbIRpZQJSGlFKUaBVNQAZoFkdAkf5us1baAXV9lChoBmgJaA9DCFn60AX1fllAlIaUUpRoFU1ABmgWR0CSBRi6xxDLdX2UKGgGaAloD0MIbeUl/5MgWECUhpRSlGgVTUAGaBZHQJIacWl/H5t1fZQoaAZoCWgPQwgz/KcbKLxBwJSGlFKUaBVNwANoFkdAkhtOdoWYW3V9lChoBmgJaA9DCEONQpJZHlTAlIaUUpRoFU3EAWgWR0CSHgxeb/fgdX2UKGgGaAloD0MIGJY/3xb/WECUhpRSlGgVTUAGaBZHQJIiTyVfNRp1fZQoaAZoCWgPQwivBigNNfdZQJSGlFKUaBVNQAZoFkdAkiJzdxhlUnV9lChoBmgJaA9DCBiV1AloEV1AlIaUUpRoFU1ABmgWR0CSI6mxdIGydX2UKGgGaAloD0MI21Gco45FXUCUhpRSlGgVTUAGaBZHQJInWxX4j8l1fZQoaAZoCWgPQwgfgNQmTj5eQJSGlFKUaBVNQAZoFkdAkieoN7SiNHV9lChoBmgJaA9DCL3jFB3JQ1hAlIaUUpRoFU1ABmgWR0CSJ/Jgb6xgdX2UKGgGaAloD0MI36mAe554XECUhpRSlGgVTUAGaBZHQJIn+tr9ETh1fZQoaAZoCWgPQwjaHVIMkEFeQJSGlFKUaBVNQAZoFkdAkiifIbOu73V9lChoBmgJaA9DCGMJa2PsMFbAlIaUUpRoFUvhaBZHQJIuGLBKtgd1fZQoaAZoCWgPQwjlub4PBzFdQJSGlFKUaBVNQAZoFkdAkjAPt6X0G3V9lChoBmgJaA9DCCuJ7IMsdl9AlIaUUpRoFU1ABmgWR0CSMPS/j81odX2UKGgGaAloD0MIc/T4vU2hWkCUhpRSlGgVTUAGaBZHQJI1d26kIop1fZQoaAZoCWgPQwg6zm3CvZddQJSGlFKUaBVNQAZoFkdAkkmK+WWyDHV9lChoBmgJaA9DCK8l5IOevF1AlIaUUpRoFU1ABmgWR0CSVvg2Ifr9dWUu"
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 364,
|
84 |
+
"n_steps": 1024,
|
85 |
+
"gamma": 0.999,
|
86 |
+
"gae_lambda": 0.98,
|
87 |
+
"ent_coef": 0.01,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 64,
|
91 |
+
"n_epochs": 4,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo-BipedalWalker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16fdab6245024e9d877efc958f753e3b02774648e9125bc29b32e599bd75b79b
|
3 |
+
size 101783
|
ppo-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e470cbe0a067d4efa0f61a698f9443a1943e39d12a30cce9177e24ca0bdd3f88
|
3 |
+
size 51710
|
ppo-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:066f123e2b4793c337c89869262273d3c710d70c234d5c5f77c93425805b6416
|
3 |
+
size 479964
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 124.81183673027044, "std_reward": 107.78804951396592, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T23:46:29.894140"}
|