mindwrapped commited on
Commit
00a0dd5
1 Parent(s): 048a4bc

Upload PPO BipedalWalker-v3 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 124.81 +/- 107.79
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: BipedalWalker-v3
20
+ type: BipedalWalker-v3
21
+ ---
22
+
23
+ # **PPO** Agent playing **BipedalWalker-v3**
24
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac5c6968c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac5c696950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac5c6969e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac5c696a70>", "_build": "<function ActorCriticPolicy._build at 0x7fac5c696b00>", "forward": "<function ActorCriticPolicy.forward at 0x7fac5c696b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac5c696c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac5c696cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac5c696d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac5c696dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac5c696e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fac5c6d7d50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVRQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVfQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 1500000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652224753.5813951, "learning_rate": 0.0003, "tensorboard_log": "runs/35k6q2p3", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAOpEz+RRA89KS6PPkApxL1pOVG/AABwtKS2h779/38/AAAAAHQNHz8YGZ29PMPCvgEAgD8AAAAAm9mnPnjMqz42V7M+3kW+PgSJ0T6f5+0+++sNP4rXOD/Rnn4/AACAP9kS/jxOHBm+lTqwPgOkUz13kD+/igBWP0nKBT+gzDE+AAAAAFQLnT+BnLc/+EicPgMAgL8AAAAAmTeYPiLymT5tXKA+NFmrPh8Nuj7vhc4+QRftPk5FEj/bGVk/AACAP4VfID9tjr+97ISdPgjBGjzU21G/wOnDPYAxj70IxrI+AACAPxMpeD/7/3+/JJtzPwMAgD8AAAAAEYGcPu29nT78nKM+7YyuPvKLvj6rHNg+F1v/PpZLHT/P9Fg/AACAP4hJD77RTL8869hUPqXuHD4argy/5xoWPra80D4AAIC/AAAAAOg0kT8AAAAAOR4oPxHYLL8AAIA/bLCkPu7bpz48I68+T7y6PmIIzj4BSeo+P+sMP5o1ND9E5nk/AACAP3PgRD6xKLM9p8G1PgzqI7zo4j+/zPmxvrBoz777/3+/AAAAABifSj9E4hU+cPnAvgEAgL8AAIA/PSi/PnxgxD67Lcw+0A/aPq6o8j5I+Ak/sk0iPw42Sj8AAIA/AACAP4qwVD4swi49pqcVPnWskj35aiy/KACAP4TbTz78/3+/AAAAAM+djT/n/38/UI2sPRQAgL8AAAAA1uSxPgbqsz4WiLg+pOfBPjE/0T58Buc+868DP2kPHz+3ZVk/AACAP203Gz4PlhE+HqEiPiwqvD164TG/mwM0v7DB/D0BAIC/AAAAAFLuTD9/Jwi/AgsIP/v/f78AAIA/jFe/Ppz2wT4tM8g+DUzSPrSU4T71UPw+EkoQPwfeKz+jsmQ/AACAP0lIkD4YnVy8cxBWPnGh3jutYla/+/9/v0CvQzwBAIA/AAAAAN4Bgz/Q3qg7wLGVPimb178AAAAAp7GPPmlTkT5xaZY+qJSfPooarj7/YsQ+CCrnPjplED/ARkY/AACAP9yTGz8taN29qzQ1PmSFFr1olUa/zjr2Pvgpu74r2vk7AACAPxuvjT8AAAAAMoZTPwEAgD8AAAAA/yuQPhCMkz78e5o+N9alPlb0sz5Wdso+UgnsPo1RDz+W6Tg/AACAPwASQT+7tjQ9ZSxOPp2Ejr2Rdki/ZiqcPmAEAr79/38/AAAAAL1UVj6DYwA/MaxmP6uqKjMAAAAAs4G7PjPpvD43JsM+kgvPPpBh4j7MCAA/RXIaP2EARz8AAIA/AACAP37bOT+E5lm9jmlMPiii+jwoPE+/wBs+PKwT5773Dls+AACAP7EZhD960Z0+JFloP6Bfh7oAAAAAAxaKPkaBjD6MYpI+06mePud9sT6348w+TTXxPgbREz9inkk/AACAP9cOnr2fScU8lpkhPouMGD6pRky/WYGcPuWuZT+UCwq/AAAAAKdEkT8AAFw2KyBfP8VVC78AAIA/7JuhPgaNoD611qE+k9umPnFFsj5vXMY+Ht/oPs14Dz91Ckc/AACAP6iTvz4MA9k9BFEbPq0ykDzOvFW/AACANKBOJ74BAIC/AAAAAG14Mj8BAIC/wHx2vm+0r74AAAAAr67CPvxfwT4oycQ+FJbMPqJP2j62N/E+zscKP6ksLD/MsGU/AACAPxEwDz8u8t49/GcXPl8/P729lU6/+MtvvrBkgb78/3+/AAAAAFpnHD8OXx2/kLP+PgEAgD8AAAAAxlScPmx+nj5uCqQ+t4OxPhEKxz4Uwec+w5gOP+/7Pj8AAIA/AACAPzishj4sltu9CGLIPSMRAbzV5Tu/OCAAP0Caybwwm+c9AACAPw3QlT+SqIE/6v0UPwAAgL8AAAAACjCBPvKQgj4lr4g+WUaTPuF7pT43qsM+A2D4Ph5/Hz9bsGI/AACAP0tZ4D32pfE96M+CPsZqjj2YyK++THozvhCYiD0BAIC/AAAAAAdrPz8AAIC/0LTUvQEAgL8AAAAAt8TOPiKv0T6VTdo+ClroPrcR/T6Itg4/Jn0mP0JkST8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.7018112000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOjyE8dOiXkCUhpRSlIwBbJRNQAaMAXSUR0CQxzRhttQ9dX2UKGgGaAloD0MIYp0q3zPYQMCUhpRSlGgVTWwDaBZHQJDh0snRb8p1fZQoaAZoCWgPQwg3T3XITQxgQJSGlFKUaBVNQAZoFkdAkOIfR7Z393V9lChoBmgJaA9DCGRbBpylmF1AlIaUUpRoFU1ABmgWR0CQ4jV/+bVjdX2UKGgGaAloD0MIzefc7XpaVcCUhpRSlGgVTUYBaBZHQJDixNet0V91fZQoaAZoCWgPQwgTgeofRF5gQJSGlFKUaBVNQAZoFkdAkOTxxDLKWHV9lChoBmgJaA9DCEfJq3MMuFxAlIaUUpRoFU1ABmgWR0CQ5cOp84PxdX2UKGgGaAloD0MIi98UVir0PcCUhpRSlGgVTT8DaBZHQJDl8X0oSct1fZQoaAZoCWgPQwhxWvCir29eQJSGlFKUaBVNQAZoFkdAkOcD3/Pw/nV9lChoBmgJaA9DCF9hwf2ATVtAlIaUUpRoFU1ABmgWR0CQ6Gl7dBSldX2UKGgGaAloD0MIISI17WIvWcCUhpRSlGgVS1RoFkdAkOq8/QjUu3V9lChoBmgJaA9DCCjwTj49ljzAlIaUUpRoFU31A2gWR0CQ6uUypJf6dX2UKGgGaAloD0MI7FG4HoWFYUCUhpRSlGgVTUAGaBZHQJDu7VLBbfR1fZQoaAZoCWgPQwiaJJaUuxxgQJSGlFKUaBVNQAZoFkdAkPDQlSjxkXV9lChoBmgJaA9DCC8xlumXI1DAlIaUUpRoFU0gAmgWR0CQ8P+PBBRidX2UKGgGaAloD0MI8bioFpHJYECUhpRSlGgVTUAGaBZHQJD4iQFLWZt1fZQoaAZoCWgPQwjs+C8QBBxgQJSGlFKUaBVNQAZoFkdAkQ+DE74i5nV9lChoBmgJaA9DCJoHsMivI15AlIaUUpRoFU1ABmgWR0CRD/32mHgxdX2UKGgGaAloD0MIEYyDS8fcNsCUhpRSlGgVTe8DaBZHQJEQ5k+X7ch1fZQoaAZoCWgPQwjg2omSkDQ5wJSGlFKUaBVNtgNoFkdAkRIZzcRDkXV9lChoBmgJaA9DCJdSl4xjh1DAlIaUUpRoFU2WAmgWR0CRFEU8FINFdX2UKGgGaAloD0MIl4v4TsxOXkCUhpRSlGgVTUAGaBZHQJEZP0th/iJ1fZQoaAZoCWgPQwjy0He3skQSQJSGlFKUaBVNZgVoFkdAkT5MvmHP/3V9lChoBmgJaA9DCEljtI6q8EXAlIaUUpRoFU3wA2gWR0CRPxRIBikPdX2UKGgGaAloD0MIIPEr1nBAX0CUhpRSlGgVTUAGaBZHQJFAPTPSlWR1fZQoaAZoCWgPQwifceFASJpXQJSGlFKUaBVNQAZoFkdAkUEl3MY/FHV9lChoBmgJaA9DCIOHad/cwljAlIaUUpRoFUtCaBZHQJFCD1lGwzN1fZQoaAZoCWgPQwiyEB0CR4IhQJSGlFKUaBVNcgVoFkdAkUOaYJE6UHV9lChoBmgJaA9DCFEWvr7WVRPAlIaUUpRoFU2WBGgWR0CRQ8MSK3uvdX2UKGgGaAloD0MIyhZJu9GVWkCUhpRSlGgVTUAGaBZHQJFEUvXbudB1fZQoaAZoCWgPQwjjNEQV/pA9wJSGlFKUaBVNkQNoFkdAkURc6q8143V9lChoBmgJaA9DCNbG2AkvbFrAlIaUUpRoFUvOaBZHQJFEqjZcs191fZQoaAZoCWgPQwj7ko0HW5pfQJSGlFKUaBVNQAZoFkdAkUVpL26ClXV9lChoBmgJaA9DCBmPUglPSlXAlIaUUpRoFU0JAWgWR0CRRXGQSzw+dX2UKGgGaAloD0MIGoo73uSqXECUhpRSlGgVTUAGaBZHQJFJCf7Jnxt1fZQoaAZoCWgPQwj/PA0YJAxSwJSGlFKUaBVNKAFoFkdAkUoSvHLidnV9lChoBmgJaA9DCL7Z5sb0FFnAlIaUUpRoFUt+aBZHQJFfx97Wuox1fZQoaAZoCWgPQwh3hxQDJEhVwJSGlFKUaBVNUwFoFkdAkWDIk/r0KHV9lChoBmgJaA9DCJNzYg/tNVPAlIaUUpRoFU23AWgWR0CRY8Ft8/lidX2UKGgGaAloD0MIaJWZ0vorTMCUhpRSlGgVTTcCaBZHQJFnE9s7+1l1fZQoaAZoCWgPQwirB8xDplQhwJSGlFKUaBVNEwRoFkdAkWhZ+H8CP3V9lChoBmgJaA9DCDpBmxw+zFxAlIaUUpRoFU1ABmgWR0CRbdzKs+3ZdX2UKGgGaAloD0MISL99HThMYECUhpRSlGgVTUAGaBZHQJFuXizcAR11fZQoaAZoCWgPQwize/KwUNZfQJSGlFKUaBVNQAZoFkdAkW9ETURWcXV9lChoBmgJaA9DCO2d0ValkmBAlIaUUpRoFU1ABmgWR0CRcGwgTyrgdX2UKGgGaAloD0MIkL3e/XEXYUCUhpRSlGgVTUAGaBZHQJFyec6Nly11fZQoaAZoCWgPQwgdIm5OJQdYwJSGlFKUaBVLjWgWR0CRdjWvKU3XdX2UKGgGaAloD0MIHHxhMlUgVMCUhpRSlGgVTQ4BaBZHQJF2c9HMEA51fZQoaAZoCWgPQwimCkYldcIUQJSGlFKUaBVNrwVoFkdAkZGXf/FR53V9lChoBmgJaA9DCNQMqaJ4mVHAlIaUUpRoFU0MAmgWR0CRkbysS00FdX2UKGgGaAloD0MIHt/eNeg3WkCUhpRSlGgVTUAGaBZHQJGS7GDL8rJ1fZQoaAZoCWgPQwjqB3WRQg9NwJSGlFKUaBVNnAJoFkdAkZOfHYHxBnV9lChoBmgJaA9DCJi9bDttQ19AlIaUUpRoFU1ABmgWR0CRlWbJfYz0dX2UKGgGaAloD0MIAqCKG7ecQMCUhpRSlGgVTWMEaBZHQJGVco2GZeB1fZQoaAZoCWgPQwgQeGAA4SBbQJSGlFKUaBVNQAZoFkdAkZcyHRCx/3V9lChoBmgJaA9DCNqs+lxtDFZAlIaUUpRoFU1ABmgWR0CRlzrVe8f3dX2UKGgGaAloD0MIhZZ1/1g6WkCUhpRSlGgVTUAGaBZHQJGb0OkLx7R1fZQoaAZoCWgPQwgCoIobNxtgQJSGlFKUaBVNQAZoFkdAkZ4mHLzPKXV9lChoBmgJaA9DCCqRRC+jw19AlIaUUpRoFU1ABmgWR0CRny8FpwjudX2UKGgGaAloD0MIyxMIO8VKIMCUhpRSlGgVTfoFaBZHQJGkrtgKF7F1fZQoaAZoCWgPQwhzuFZ72F9dQJSGlFKUaBVNQAZoFkdAkaVlFUhmoXV9lChoBmgJaA9DCO58PzVelWJAlIaUUpRoFU1ABmgWR0CRv7Vlf7aadX2UKGgGaAloD0MIr0M1JVk3NcCUhpRSlGgVTUgEaBZHQJHGeACnxax1fZQoaAZoCWgPQwgUWtb9Y39bQJSGlFKUaBVNQAZoFkdAkcgfcer+53V9lChoBmgJaA9DCHMuxVVl9F9AlIaUUpRoFU1ABmgWR0CRyGFGoaUBdX2UKGgGaAloD0MI6kDWU6vcXECUhpRSlGgVTUAGaBZHQJHQI4//vOR1fZQoaAZoCWgPQwhkdha9U11YQJSGlFKUaBVNQAZoFkdAkdBIfGMn7nV9lChoBmgJaA9DCDDa44X0jWBAlIaUUpRoFU1ABmgWR0CR0YLV4HHFdX2UKGgGaAloD0MIv9alRuh6WkCUhpRSlGgVTUAGaBZHQJHSKGj9GZx1fZQoaAZoCWgPQwjmCBnIs5JWQJSGlFKUaBVNQAZoFkdAkdP7SNOuaHV9lChoBmgJaA9DCNbh6CrdM1nAlIaUUpRoFUtwaBZHQJHVNBF/hEV1fZQoaAZoCWgPQwihZd0/FvJawJSGlFKUaBVLOWgWR0CR1X/TLGJfdX2UKGgGaAloD0MIGcVyS6u+WkCUhpRSlGgVTUAGaBZHQJHVyQSzw+d1fZQoaAZoCWgPQwhKea2E7utYQJSGlFKUaBVNQAZoFkdAkdXR4Uvf0nV9lChoBmgJaA9DCHRC6KBLhlTAlIaUUpRoFU0VAmgWR0CR1m3solUqdX2UKGgGaAloD0MIQQ+1bRgzXECUhpRSlGgVTUAGaBZHQJHt/IFNcnp1fZQoaAZoCWgPQwjON6J71ttaQJSGlFKUaBVNQAZoFkdAkfBrJ8v25HV9lChoBmgJaA9DCLnjTX6LTVxAlIaUUpRoFU1ABmgWR0CR8YDGtITXdX2UKGgGaAloD0MIURVT6SefWcCUhpRSlGgVS0hoFkdAkfJqGlANX3V9lChoBmgJaA9DCO84RUdyPVVAlIaUUpRoFU1ABmgWR0CR9wMhHLA6dX2UKGgGaAloD0MIMsaH2ctyWkCUhpRSlGgVTUAGaBZHQJH3ssTWXkZ1fZQoaAZoCWgPQwiKWppbIRpZQJSGlFKUaBVNQAZoFkdAkf5us1baAXV9lChoBmgJaA9DCFn60AX1fllAlIaUUpRoFU1ABmgWR0CSBRi6xxDLdX2UKGgGaAloD0MIbeUl/5MgWECUhpRSlGgVTUAGaBZHQJIacWl/H5t1fZQoaAZoCWgPQwgz/KcbKLxBwJSGlFKUaBVNwANoFkdAkhtOdoWYW3V9lChoBmgJaA9DCEONQpJZHlTAlIaUUpRoFU3EAWgWR0CSHgxeb/fgdX2UKGgGaAloD0MIGJY/3xb/WECUhpRSlGgVTUAGaBZHQJIiTyVfNRp1fZQoaAZoCWgPQwivBigNNfdZQJSGlFKUaBVNQAZoFkdAkiJzdxhlUnV9lChoBmgJaA9DCBiV1AloEV1AlIaUUpRoFU1ABmgWR0CSI6mxdIGydX2UKGgGaAloD0MI21Gco45FXUCUhpRSlGgVTUAGaBZHQJInWxX4j8l1fZQoaAZoCWgPQwgfgNQmTj5eQJSGlFKUaBVNQAZoFkdAkieoN7SiNHV9lChoBmgJaA9DCL3jFB3JQ1hAlIaUUpRoFU1ABmgWR0CSJ/Jgb6xgdX2UKGgGaAloD0MI36mAe554XECUhpRSlGgVTUAGaBZHQJIn+tr9ETh1fZQoaAZoCWgPQwjaHVIMkEFeQJSGlFKUaBVNQAZoFkdAkiifIbOu73V9lChoBmgJaA9DCGMJa2PsMFbAlIaUUpRoFUvhaBZHQJIuGLBKtgd1fZQoaAZoCWgPQwjlub4PBzFdQJSGlFKUaBVNQAZoFkdAkjAPt6X0G3V9lChoBmgJaA9DCCuJ7IMsdl9AlIaUUpRoFU1ABmgWR0CSMPS/j81odX2UKGgGaAloD0MIc/T4vU2hWkCUhpRSlGgVTUAGaBZHQJI1d26kIop1fZQoaAZoCWgPQwg6zm3CvZddQJSGlFKUaBVNQAZoFkdAkkmK+WWyDHV9lChoBmgJaA9DCK8l5IOevF1AlIaUUpRoFU1ABmgWR0CSVvg2Ifr9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 364, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24fd084e9b0a1e70ab8e244d849e2857a62baa5341053b143024e33b4ea92f88
3
+ size 171954
ppo-BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-BipedalWalker-v3/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac5c6968c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac5c696950>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac5c6969e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac5c696a70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fac5c696b00>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fac5c696b90>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac5c696c20>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fac5c696cb0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac5c696d40>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac5c696dd0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac5c696e60>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fac5c6d7d50>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVRQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 24
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.box.Box'>",
38
+ ":serialized:": "gAWVfQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgLSwSFlIwBQ5R0lFKUjARoaWdolGgTKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYEAAAAAAAAAAEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYEAAAAAAAAAAEBAQGUaCJLBIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
39
+ "dtype": "float32",
40
+ "_shape": [
41
+ 4
42
+ ],
43
+ "low": "[-1. -1. -1. -1.]",
44
+ "high": "[1. 1. 1. 1.]",
45
+ "bounded_below": "[ True True True True]",
46
+ "bounded_above": "[ True True True True]",
47
+ "_np_random": null
48
+ },
49
+ "n_envs": 16,
50
+ "num_timesteps": 1500000,
51
+ "_total_timesteps": 5000000,
52
+ "_num_timesteps_at_start": 0,
53
+ "seed": null,
54
+ "action_noise": null,
55
+ "start_time": 1652224753.5813951,
56
+ "learning_rate": 0.0003,
57
+ "tensorboard_log": "runs/35k6q2p3",
58
+ "lr_schedule": {
59
+ ":type:": "<class 'function'>",
60
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
61
+ },
62
+ "_last_obs": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAAOpEz+RRA89KS6PPkApxL1pOVG/AABwtKS2h779/38/AAAAAHQNHz8YGZ29PMPCvgEAgD8AAAAAm9mnPnjMqz42V7M+3kW+PgSJ0T6f5+0+++sNP4rXOD/Rnn4/AACAP9kS/jxOHBm+lTqwPgOkUz13kD+/igBWP0nKBT+gzDE+AAAAAFQLnT+BnLc/+EicPgMAgL8AAAAAmTeYPiLymT5tXKA+NFmrPh8Nuj7vhc4+QRftPk5FEj/bGVk/AACAP4VfID9tjr+97ISdPgjBGjzU21G/wOnDPYAxj70IxrI+AACAPxMpeD/7/3+/JJtzPwMAgD8AAAAAEYGcPu29nT78nKM+7YyuPvKLvj6rHNg+F1v/PpZLHT/P9Fg/AACAP4hJD77RTL8869hUPqXuHD4argy/5xoWPra80D4AAIC/AAAAAOg0kT8AAAAAOR4oPxHYLL8AAIA/bLCkPu7bpz48I68+T7y6PmIIzj4BSeo+P+sMP5o1ND9E5nk/AACAP3PgRD6xKLM9p8G1PgzqI7zo4j+/zPmxvrBoz777/3+/AAAAABifSj9E4hU+cPnAvgEAgL8AAIA/PSi/PnxgxD67Lcw+0A/aPq6o8j5I+Ak/sk0iPw42Sj8AAIA/AACAP4qwVD4swi49pqcVPnWskj35aiy/KACAP4TbTz78/3+/AAAAAM+djT/n/38/UI2sPRQAgL8AAAAA1uSxPgbqsz4WiLg+pOfBPjE/0T58Buc+868DP2kPHz+3ZVk/AACAP203Gz4PlhE+HqEiPiwqvD164TG/mwM0v7DB/D0BAIC/AAAAAFLuTD9/Jwi/AgsIP/v/f78AAIA/jFe/Ppz2wT4tM8g+DUzSPrSU4T71UPw+EkoQPwfeKz+jsmQ/AACAP0lIkD4YnVy8cxBWPnGh3jutYla/+/9/v0CvQzwBAIA/AAAAAN4Bgz/Q3qg7wLGVPimb178AAAAAp7GPPmlTkT5xaZY+qJSfPooarj7/YsQ+CCrnPjplED/ARkY/AACAP9yTGz8taN29qzQ1PmSFFr1olUa/zjr2Pvgpu74r2vk7AACAPxuvjT8AAAAAMoZTPwEAgD8AAAAA/yuQPhCMkz78e5o+N9alPlb0sz5Wdso+UgnsPo1RDz+W6Tg/AACAPwASQT+7tjQ9ZSxOPp2Ejr2Rdki/ZiqcPmAEAr79/38/AAAAAL1UVj6DYwA/MaxmP6uqKjMAAAAAs4G7PjPpvD43JsM+kgvPPpBh4j7MCAA/RXIaP2EARz8AAIA/AACAP37bOT+E5lm9jmlMPiii+jwoPE+/wBs+PKwT5773Dls+AACAP7EZhD960Z0+JFloP6Bfh7oAAAAAAxaKPkaBjD6MYpI+06mePud9sT6348w+TTXxPgbREz9inkk/AACAP9cOnr2fScU8lpkhPouMGD6pRky/WYGcPuWuZT+UCwq/AAAAAKdEkT8AAFw2KyBfP8VVC78AAIA/7JuhPgaNoD611qE+k9umPnFFsj5vXMY+Ht/oPs14Dz91Ckc/AACAP6iTvz4MA9k9BFEbPq0ykDzOvFW/AACANKBOJ74BAIC/AAAAAG14Mj8BAIC/wHx2vm+0r74AAAAAr67CPvxfwT4oycQ+FJbMPqJP2j62N/E+zscKP6ksLD/MsGU/AACAPxEwDz8u8t49/GcXPl8/P729lU6/+MtvvrBkgb78/3+/AAAAAFpnHD8OXx2/kLP+PgEAgD8AAAAAxlScPmx+nj5uCqQ+t4OxPhEKxz4Uwec+w5gOP+/7Pj8AAIA/AACAPzishj4sltu9CGLIPSMRAbzV5Tu/OCAAP0Caybwwm+c9AACAPw3QlT+SqIE/6v0UPwAAgL8AAAAACjCBPvKQgj4lr4g+WUaTPuF7pT43qsM+A2D4Ph5/Hz9bsGI/AACAP0tZ4D32pfE96M+CPsZqjj2YyK++THozvhCYiD0BAIC/AAAAAAdrPz8AAIC/0LTUvQEAgL8AAAAAt8TOPiKv0T6VTdo+ClroPrcR/T6Itg4/Jn0mP0JkST8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
65
+ },
66
+ "_last_episode_starts": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
69
+ },
70
+ "_last_original_obs": null,
71
+ "_episode_num": 0,
72
+ "use_sde": false,
73
+ "sde_sample_freq": -1,
74
+ "_current_progress_remaining": 0.7018112000000001,
75
+ "ep_info_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOjyE8dOiXkCUhpRSlIwBbJRNQAaMAXSUR0CQxzRhttQ9dX2UKGgGaAloD0MIYp0q3zPYQMCUhpRSlGgVTWwDaBZHQJDh0snRb8p1fZQoaAZoCWgPQwg3T3XITQxgQJSGlFKUaBVNQAZoFkdAkOIfR7Z393V9lChoBmgJaA9DCGRbBpylmF1AlIaUUpRoFU1ABmgWR0CQ4jV/+bVjdX2UKGgGaAloD0MIzefc7XpaVcCUhpRSlGgVTUYBaBZHQJDixNet0V91fZQoaAZoCWgPQwgTgeofRF5gQJSGlFKUaBVNQAZoFkdAkOTxxDLKWHV9lChoBmgJaA9DCEfJq3MMuFxAlIaUUpRoFU1ABmgWR0CQ5cOp84PxdX2UKGgGaAloD0MIi98UVir0PcCUhpRSlGgVTT8DaBZHQJDl8X0oSct1fZQoaAZoCWgPQwhxWvCir29eQJSGlFKUaBVNQAZoFkdAkOcD3/Pw/nV9lChoBmgJaA9DCF9hwf2ATVtAlIaUUpRoFU1ABmgWR0CQ6Gl7dBSldX2UKGgGaAloD0MIISI17WIvWcCUhpRSlGgVS1RoFkdAkOq8/QjUu3V9lChoBmgJaA9DCCjwTj49ljzAlIaUUpRoFU31A2gWR0CQ6uUypJf6dX2UKGgGaAloD0MI7FG4HoWFYUCUhpRSlGgVTUAGaBZHQJDu7VLBbfR1fZQoaAZoCWgPQwiaJJaUuxxgQJSGlFKUaBVNQAZoFkdAkPDQlSjxkXV9lChoBmgJaA9DCC8xlumXI1DAlIaUUpRoFU0gAmgWR0CQ8P+PBBRidX2UKGgGaAloD0MI8bioFpHJYECUhpRSlGgVTUAGaBZHQJD4iQFLWZt1fZQoaAZoCWgPQwjs+C8QBBxgQJSGlFKUaBVNQAZoFkdAkQ+DE74i5nV9lChoBmgJaA9DCJoHsMivI15AlIaUUpRoFU1ABmgWR0CRD/32mHgxdX2UKGgGaAloD0MIEYyDS8fcNsCUhpRSlGgVTe8DaBZHQJEQ5k+X7ch1fZQoaAZoCWgPQwjg2omSkDQ5wJSGlFKUaBVNtgNoFkdAkRIZzcRDkXV9lChoBmgJaA9DCJdSl4xjh1DAlIaUUpRoFU2WAmgWR0CRFEU8FINFdX2UKGgGaAloD0MIl4v4TsxOXkCUhpRSlGgVTUAGaBZHQJEZP0th/iJ1fZQoaAZoCWgPQwjy0He3skQSQJSGlFKUaBVNZgVoFkdAkT5MvmHP/3V9lChoBmgJaA9DCEljtI6q8EXAlIaUUpRoFU3wA2gWR0CRPxRIBikPdX2UKGgGaAloD0MIIPEr1nBAX0CUhpRSlGgVTUAGaBZHQJFAPTPSlWR1fZQoaAZoCWgPQwifceFASJpXQJSGlFKUaBVNQAZoFkdAkUEl3MY/FHV9lChoBmgJaA9DCIOHad/cwljAlIaUUpRoFUtCaBZHQJFCD1lGwzN1fZQoaAZoCWgPQwiyEB0CR4IhQJSGlFKUaBVNcgVoFkdAkUOaYJE6UHV9lChoBmgJaA9DCFEWvr7WVRPAlIaUUpRoFU2WBGgWR0CRQ8MSK3uvdX2UKGgGaAloD0MIyhZJu9GVWkCUhpRSlGgVTUAGaBZHQJFEUvXbudB1fZQoaAZoCWgPQwjjNEQV/pA9wJSGlFKUaBVNkQNoFkdAkURc6q8143V9lChoBmgJaA9DCNbG2AkvbFrAlIaUUpRoFUvOaBZHQJFEqjZcs191fZQoaAZoCWgPQwj7ko0HW5pfQJSGlFKUaBVNQAZoFkdAkUVpL26ClXV9lChoBmgJaA9DCBmPUglPSlXAlIaUUpRoFU0JAWgWR0CRRXGQSzw+dX2UKGgGaAloD0MIGoo73uSqXECUhpRSlGgVTUAGaBZHQJFJCf7Jnxt1fZQoaAZoCWgPQwj/PA0YJAxSwJSGlFKUaBVNKAFoFkdAkUoSvHLidnV9lChoBmgJaA9DCL7Z5sb0FFnAlIaUUpRoFUt+aBZHQJFfx97Wuox1fZQoaAZoCWgPQwh3hxQDJEhVwJSGlFKUaBVNUwFoFkdAkWDIk/r0KHV9lChoBmgJaA9DCJNzYg/tNVPAlIaUUpRoFU23AWgWR0CRY8Ft8/lidX2UKGgGaAloD0MIaJWZ0vorTMCUhpRSlGgVTTcCaBZHQJFnE9s7+1l1fZQoaAZoCWgPQwirB8xDplQhwJSGlFKUaBVNEwRoFkdAkWhZ+H8CP3V9lChoBmgJaA9DCDpBmxw+zFxAlIaUUpRoFU1ABmgWR0CRbdzKs+3ZdX2UKGgGaAloD0MISL99HThMYECUhpRSlGgVTUAGaBZHQJFuXizcAR11fZQoaAZoCWgPQwize/KwUNZfQJSGlFKUaBVNQAZoFkdAkW9ETURWcXV9lChoBmgJaA9DCO2d0ValkmBAlIaUUpRoFU1ABmgWR0CRcGwgTyrgdX2UKGgGaAloD0MIkL3e/XEXYUCUhpRSlGgVTUAGaBZHQJFyec6Nly11fZQoaAZoCWgPQwgdIm5OJQdYwJSGlFKUaBVLjWgWR0CRdjWvKU3XdX2UKGgGaAloD0MIHHxhMlUgVMCUhpRSlGgVTQ4BaBZHQJF2c9HMEA51fZQoaAZoCWgPQwimCkYldcIUQJSGlFKUaBVNrwVoFkdAkZGXf/FR53V9lChoBmgJaA9DCNQMqaJ4mVHAlIaUUpRoFU0MAmgWR0CRkbysS00FdX2UKGgGaAloD0MIHt/eNeg3WkCUhpRSlGgVTUAGaBZHQJGS7GDL8rJ1fZQoaAZoCWgPQwjqB3WRQg9NwJSGlFKUaBVNnAJoFkdAkZOfHYHxBnV9lChoBmgJaA9DCJi9bDttQ19AlIaUUpRoFU1ABmgWR0CRlWbJfYz0dX2UKGgGaAloD0MIAqCKG7ecQMCUhpRSlGgVTWMEaBZHQJGVco2GZeB1fZQoaAZoCWgPQwgQeGAA4SBbQJSGlFKUaBVNQAZoFkdAkZcyHRCx/3V9lChoBmgJaA9DCNqs+lxtDFZAlIaUUpRoFU1ABmgWR0CRlzrVe8f3dX2UKGgGaAloD0MIhZZ1/1g6WkCUhpRSlGgVTUAGaBZHQJGb0OkLx7R1fZQoaAZoCWgPQwgCoIobNxtgQJSGlFKUaBVNQAZoFkdAkZ4mHLzPKXV9lChoBmgJaA9DCCqRRC+jw19AlIaUUpRoFU1ABmgWR0CRny8FpwjudX2UKGgGaAloD0MIyxMIO8VKIMCUhpRSlGgVTfoFaBZHQJGkrtgKF7F1fZQoaAZoCWgPQwhzuFZ72F9dQJSGlFKUaBVNQAZoFkdAkaVlFUhmoXV9lChoBmgJaA9DCO58PzVelWJAlIaUUpRoFU1ABmgWR0CRv7Vlf7aadX2UKGgGaAloD0MIr0M1JVk3NcCUhpRSlGgVTUgEaBZHQJHGeACnxax1fZQoaAZoCWgPQwgUWtb9Y39bQJSGlFKUaBVNQAZoFkdAkcgfcer+53V9lChoBmgJaA9DCHMuxVVl9F9AlIaUUpRoFU1ABmgWR0CRyGFGoaUBdX2UKGgGaAloD0MI6kDWU6vcXECUhpRSlGgVTUAGaBZHQJHQI4//vOR1fZQoaAZoCWgPQwhkdha9U11YQJSGlFKUaBVNQAZoFkdAkdBIfGMn7nV9lChoBmgJaA9DCDDa44X0jWBAlIaUUpRoFU1ABmgWR0CR0YLV4HHFdX2UKGgGaAloD0MIv9alRuh6WkCUhpRSlGgVTUAGaBZHQJHSKGj9GZx1fZQoaAZoCWgPQwjmCBnIs5JWQJSGlFKUaBVNQAZoFkdAkdP7SNOuaHV9lChoBmgJaA9DCNbh6CrdM1nAlIaUUpRoFUtwaBZHQJHVNBF/hEV1fZQoaAZoCWgPQwihZd0/FvJawJSGlFKUaBVLOWgWR0CR1X/TLGJfdX2UKGgGaAloD0MIGcVyS6u+WkCUhpRSlGgVTUAGaBZHQJHVyQSzw+d1fZQoaAZoCWgPQwhKea2E7utYQJSGlFKUaBVNQAZoFkdAkdXR4Uvf0nV9lChoBmgJaA9DCHRC6KBLhlTAlIaUUpRoFU0VAmgWR0CR1m3solUqdX2UKGgGaAloD0MIQQ+1bRgzXECUhpRSlGgVTUAGaBZHQJHt/IFNcnp1fZQoaAZoCWgPQwjON6J71ttaQJSGlFKUaBVNQAZoFkdAkfBrJ8v25HV9lChoBmgJaA9DCLnjTX6LTVxAlIaUUpRoFU1ABmgWR0CR8YDGtITXdX2UKGgGaAloD0MIURVT6SefWcCUhpRSlGgVS0hoFkdAkfJqGlANX3V9lChoBmgJaA9DCO84RUdyPVVAlIaUUpRoFU1ABmgWR0CR9wMhHLA6dX2UKGgGaAloD0MIMsaH2ctyWkCUhpRSlGgVTUAGaBZHQJH3ssTWXkZ1fZQoaAZoCWgPQwiKWppbIRpZQJSGlFKUaBVNQAZoFkdAkf5us1baAXV9lChoBmgJaA9DCFn60AX1fllAlIaUUpRoFU1ABmgWR0CSBRi6xxDLdX2UKGgGaAloD0MIbeUl/5MgWECUhpRSlGgVTUAGaBZHQJIacWl/H5t1fZQoaAZoCWgPQwgz/KcbKLxBwJSGlFKUaBVNwANoFkdAkhtOdoWYW3V9lChoBmgJaA9DCEONQpJZHlTAlIaUUpRoFU3EAWgWR0CSHgxeb/fgdX2UKGgGaAloD0MIGJY/3xb/WECUhpRSlGgVTUAGaBZHQJIiTyVfNRp1fZQoaAZoCWgPQwivBigNNfdZQJSGlFKUaBVNQAZoFkdAkiJzdxhlUnV9lChoBmgJaA9DCBiV1AloEV1AlIaUUpRoFU1ABmgWR0CSI6mxdIGydX2UKGgGaAloD0MI21Gco45FXUCUhpRSlGgVTUAGaBZHQJInWxX4j8l1fZQoaAZoCWgPQwgfgNQmTj5eQJSGlFKUaBVNQAZoFkdAkieoN7SiNHV9lChoBmgJaA9DCL3jFB3JQ1hAlIaUUpRoFU1ABmgWR0CSJ/Jgb6xgdX2UKGgGaAloD0MI36mAe554XECUhpRSlGgVTUAGaBZHQJIn+tr9ETh1fZQoaAZoCWgPQwjaHVIMkEFeQJSGlFKUaBVNQAZoFkdAkiifIbOu73V9lChoBmgJaA9DCGMJa2PsMFbAlIaUUpRoFUvhaBZHQJIuGLBKtgd1fZQoaAZoCWgPQwjlub4PBzFdQJSGlFKUaBVNQAZoFkdAkjAPt6X0G3V9lChoBmgJaA9DCCuJ7IMsdl9AlIaUUpRoFU1ABmgWR0CSMPS/j81odX2UKGgGaAloD0MIc/T4vU2hWkCUhpRSlGgVTUAGaBZHQJI1d26kIop1fZQoaAZoCWgPQwg6zm3CvZddQJSGlFKUaBVNQAZoFkdAkkmK+WWyDHV9lChoBmgJaA9DCK8l5IOevF1AlIaUUpRoFU1ABmgWR0CSVvg2Ifr9dWUu"
78
+ },
79
+ "ep_success_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
+ },
83
+ "_n_updates": 364,
84
+ "n_steps": 1024,
85
+ "gamma": 0.999,
86
+ "gae_lambda": 0.98,
87
+ "ent_coef": 0.01,
88
+ "vf_coef": 0.5,
89
+ "max_grad_norm": 0.5,
90
+ "batch_size": 64,
91
+ "n_epochs": 4,
92
+ "clip_range": {
93
+ ":type:": "<class 'function'>",
94
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
95
+ },
96
+ "clip_range_vf": null,
97
+ "normalize_advantage": true,
98
+ "target_kl": null
99
+ }
ppo-BipedalWalker-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16fdab6245024e9d877efc958f753e3b02774648e9125bc29b32e599bd75b79b
3
+ size 101783
ppo-BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e470cbe0a067d4efa0f61a698f9443a1943e39d12a30cce9177e24ca0bdd3f88
3
+ size 51710
ppo-BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:066f123e2b4793c337c89869262273d3c710d70c234d5c5f77c93425805b6416
3
+ size 479964
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 124.81183673027044, "std_reward": 107.78804951396592, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T23:46:29.894140"}