File size: 1,571 Bytes
dd8c9c5 5322785 610a51e dd8c9c5 610a51e dd8c9c5 5322785 610a51e dd8c9c5 610a51e dd8c9c5 610a51e dd8c9c5 610a51e dd8c9c5 610a51e dd8c9c5 178c8a5 dd8c9c5 610a51e dd8c9c5 610a51e dd8c9c5 610a51e 178c8a5 610a51e dd8c9c5 610a51e dd8c9c5 610a51e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
base_model: meta-llama/Llama-2-7b-hf
datasets: stanfordnlp/imdb
library_name: transformers
model_name: llama2-7b-SFT
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for llama2-7b-SFT
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the [stanfordnlp/imdb](https://huggingface.co/datasets/stanfordnlp/imdb) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="mingxilei/llama2-7b-SFT", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.12.2
- Transformers: 4.46.3
- Pytorch: 2.5.1+cu124
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |