File size: 21,054 Bytes
ce3feed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
"""
Author: Minh Pham-Dinh
Created: Jan 27th, 2024
Last Modified: Feb 10th, 2024
Email: [email protected]
Description:
main Dreamer file.
The implementation is based on:
Hafner et al., "Dream to Control: Learning Behaviors by Latent Imagination," 2019.
[Online]. Available: https://arxiv.org/abs/1912.01603
"""
# Standard Library Imports
import os
import numpy as np
import yaml
from tqdm import tqdm
import wandb
# Machine Learning and Data Processing Imports
import torch
import torch.nn as nn
import torch.optim as optim
# Custom Utility Imports
import utils.models as models
from utils.buffer import ReplayBuffer
from utils.utils import td_lambda, log_metrics
class Dreamer:
def __init__(self, config, logpath, env, writer = None, wandb_writer=None):
self.config = config
self.device = torch.device(self.config.device)
self.env = env
self.obs_size = env.observation_space.shape
self.action_size = env.action_space.n if self.config.env.discrete else env.action_space.shape[0]
self.epsilon = self.config.main.epsilon_start
self.env_step = 0
self.logpath = logpath
# Set random seed for reproducibility
np.random.seed(self.config.seed)
torch.manual_seed(self.config.seed)
#dynamic networks initialized
self.rssm = models.RSSM(self.config.main.stochastic_size,
self.config.main.embedded_obs_size,
self.config.main.deterministic_size,
self.config.main.hidden_units,
self.action_size).to(self.device)
self.reward = models.RewardNet(self.config.main.stochastic_size + self.config.main.deterministic_size,
self.config.main.hidden_units).to(self.device)
if self.config.main.continue_loss:
self.cont_net = models.ContinuoNet(self.config.main.stochastic_size + self.config.main.deterministic_size,
self.config.main.hidden_units).to(self.device)
self.encoder = models.ConvEncoder(input_shape=self.obs_size).to(self.device)
self.decoder = models.ConvDecoder(self.config.main.stochastic_size,
self.config.main.deterministic_size,
out_shape=self.obs_size).to(self.device)
self.dyna_parameters = (
list(self.rssm.parameters())
+ list(self.reward.parameters())
+ list(self.encoder.parameters())
+ list(self.decoder.parameters())
)
if self.config.main.continue_loss:
self.dyna_parameters += list(self.cont_net.parameters())
#behavior networks initialized
self.actor = models.Actor(self.config.main.stochastic_size + self.config.main.deterministic_size,
self.config.main.hidden_units,
self.action_size,
self.config.env.discrete).to(self.device)
self.critic = models.Critic(self.config.main.stochastic_size + self.config.main.deterministic_size,
self.config.main.hidden_units).to(self.device)
#optimizers
self.dyna_optimizer = optim.Adam(self.dyna_parameters, lr=self.config.main.dyna_model_lr)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=self.config.main.actor_lr)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=self.config.main.critic_lr)
self.gradient_step = 0
#buffer
self.buffer = ReplayBuffer(self.config.main.buffer_capacity, self.obs_size, (self.action_size, ))
#tracking stuff
self.wandb_writer = wandb_writer
self.writer = writer
def update_epsilon(self):
"""In use for decaying epsilon in discrete env
Returns:
_type_: _description_
"""
eps_start = self.config.main.epsilon_start
eps_end = self.config.main.epsilon_end
decay_steps = self.config.main.eps_decay_steps
decay_rate = (eps_start - eps_end) / (decay_steps)
self.epsilon = max(eps_end, eps_start - decay_rate*self.gradient_step)
def train(self):
"""main training loop, implementation follow closely with the loop from the official paper
Returns:
_type_: _description_
"""
#prefill dataset
ep = 0
obs, _ = self.env.reset()
while ep < self.config.main.data_init_ep:
action = self.env.action_space.sample()
if self.config.env.discrete:
actions = np.zeros((self.action_size, ))
actions[action] = 1.0
else:
actions = action
next_obs, reward, termination, truncation, info = self.env.step(action)
self.buffer.add(obs, actions, reward, termination or truncation)
obs = next_obs
if "episode" in info:
obs, _ = self.env.reset()
ep += 1
print(ep)
if 'video_path' in info and self.wandb_writer:
self.wandb_writer.log({'performance/videos': wandb.Video(info['video_path'], format='webm')})
#main train loop
for _ in tqdm(range(self.config.main.total_iter)):
#save model if reached checkpoint
if _ % self.config.main.save_freq == 0:
#check if models folder exist
directory = self.logpath + 'models/'
os.makedirs(directory, exist_ok=True)
#save models
torch.save(self.rssm, self.logpath + 'models/rssm_model')
torch.save(self.encoder, self.logpath + 'models/encoder')
torch.save(self.decoder, self.logpath + 'models/decoder')
torch.save(self.actor, self.logpath + 'models/actor')
torch.save(self.critic, self.logpath + 'models/critic')
#run eval if reach eval checkpoint
if _ % self.config.main.eval_freq == 0:
eval_score = self.data_collection(self.config.main.eval_eps, eval=True)
metrics = {'performance/evaluation score': eval_score}
log_metrics(metrics, self.env_step, self.writer, self.wandb_writer)
#training step
for c in tqdm(range(self.config.main.collect_iter)):
#draw data
batch = self.buffer.sample(self.config.main.batch_size, self.config.main.seq_len, self.device)
#dynamic learning
post, deter = self.dynamic_learning(batch)
#behavioral learning
self.behavioral_learning(post, deter)
#update step
self.gradient_step += 1
self.update_epsilon()
# collect more data with exploration noise
self.data_collection(self.config.main.data_interact_ep)
def dynamic_learning(self, batch):
"""Learning the dynamic model. In this method, we sequentially pass data in the RSSM to
learn the model
Args:
batch (addict.Dict): batches of data
"""
'''
We unpack the batch. A batch contains:
- b_obs (batch_size, seq_len, *obs.shape): batches of observation
- b_a (batch_size, seq_len, 1): batches of action
- b_r (batch_size, seq_len, 1): batches of rewards
- b_d (batch_size, seq_len, 1): batches of termination signal
'''
b_obs = batch.obs
b_a = batch.actions
b_r = batch.rewards
b_d = batch.dones
batch_size, seq_len, _ = b_r.shape
eb_obs = self.encoder(b_obs)
#initialized stochastic states (posterior) and deterministic states to first pass into the recurrent model
posterior = torch.zeros((batch_size, self.config.main.stochastic_size)).to(self.device)
deterministic = torch.zeros((batch_size, self.config.main.deterministic_size)).to(self.device)
#initialized memory storing of sequential gradients data
posteriors = torch.zeros((batch_size, seq_len-1, self.config.main.stochastic_size)).to(self.device)
priors = torch.zeros((batch_size, seq_len-1, self.config.main.stochastic_size)).to(self.device)
deterministics = torch.zeros((batch_size, seq_len-1, self.config.main.deterministic_size)).to(self.device)
posterior_means = torch.zeros_like(posteriors).to(self.device)
posterior_stds = torch.zeros_like(posteriors).to(self.device)
prior_means = torch.zeros_like(priors).to(self.device)
prior_stds = torch.zeros_like(priors).to(self.device)
#start passing data through the dynamic model
for t in (range(1, seq_len)):
deterministic = self.rssm.recurrent(posterior, b_a[:, t-1, :], deterministic)
prior_dist, prior = self.rssm.transition(deterministic)
#detail observation is shifted 1 timestep ahead(action is associated with the next state)
posterior_dist, posterior = self.rssm.representation(eb_obs[:, t, :], deterministic)
'''
store recurrent data
data are shifted 1 timestep ahead. Start from the second timestep or t=1
'''
posteriors[:, t-1, :] = posterior
posterior_means[:, t-1, :] = posterior_dist.mean
posterior_stds[:, t-1, :] = posterior_dist.scale
priors[:, t-1, :] = prior
prior_means[:, t-1, :] = prior_dist.mean
prior_stds[:, t-1, :] = prior_dist.scale
deterministics[:, t-1, :] = deterministic
#we start optimizing model with the provided data
'''
Reconstruction loss. This loss helps the model learn to encode pixels observation.
'''
mps_flatten = False
if self.device == torch.device("mps"):
mps_flatten = True
reconstruct_dist = self.decoder(posteriors, deterministics, mps_flatten)
target = b_obs[:, 1:]
if mps_flatten:
target = target.reshape(-1, *self.obs_size)
reconstruct_loss = reconstruct_dist.log_prob(target).mean()
#reward loss
rewards = self.reward(posteriors, deterministics)
rewards_dist = torch.distributions.Normal(rewards, 1)
rewards_dist = torch.distributions.Independent(rewards_dist, 1)
rewards_loss = rewards_dist.log_prob(b_r[:, 1:]).mean()
'''
Continuity loss. This loss term helps predict the probability of an episode terminate at a particular state
'''
if self.config.main.continue_loss:
# calculate log prob manually as tensorflow doesn't support float value in logprob of Bernoulli
# follow closely to Hafner's official code for Dreamer
cont_logits, _ = self.cont_net(posteriors, deterministics)
cont_target = (1 - b_d[:, 1:]) * self.config.main.discount
continue_loss = torch.nn.functional.binary_cross_entropy_with_logits(cont_logits, cont_target)
else:
continue_loss = torch.zeros((1)).to(self.device)
'''
KL loss. Matching the distribution of transition and representation model. This is to ensure we have the accurate transition model for use in imagination process
'''
priors_dist = torch.distributions.Independent(
torch.distributions.Normal(prior_means, prior_stds), 1
)
posteriors_dist = torch.distributions.Independent(
torch.distributions.Normal(posterior_means, posterior_stds), 1
)
kl_loss = torch.max(
torch.mean(torch.distributions.kl.kl_divergence(posteriors_dist, priors_dist)),
torch.tensor(self.config.main.free_nats).to(self.device)
)
total_loss = self.config.main.kl_divergence_scale * kl_loss - reconstruct_loss - rewards_loss + continue_loss
self.dyna_optimizer.zero_grad()
total_loss.backward()
nn.utils.clip_grad_norm_(
self.dyna_parameters,
self.config.main.clip_grad,
norm_type=self.config.main.grad_norm_type,
)
self.dyna_optimizer.step()
#tensorboard logging
metrics = {
'Dynamic_model/KL': kl_loss.item(),
'Dynamic_model/Reconstruction': reconstruct_loss.item(),
'Dynamic_model/Reward': rewards_loss.item(),
'Dynamic_model/Continue': continue_loss.item(),
'Dynamic_model/Total': total_loss.item()
}
log_metrics(metrics, self.gradient_step, self.writer, self.wandb_writer)
return posteriors.detach(), deterministics.detach()
def behavioral_learning(self, state, deterministics):
"""Learning behavioral through latent imagination
Args:
self (_type_): _description_
state (batch_size, seq_len-1, stoch_state_size): starting point state
deterministics (batch_size, seq_len-1, stoch_state_size)
"""
#flatten the batches --> new size (batch_size * (seq_len-1), *)
state = state.reshape(-1, self.config.main.stochastic_size)
deterministics = deterministics.reshape(-1, self.config.main.deterministic_size)
batch_size, stochastic_size = state.shape
_, deterministics_size = deterministics.shape
#initialized trajectories
state_trajectories = torch.zeros((batch_size, self.config.main.horizon, stochastic_size)).to(self.device)
deterministics_trajectories = torch.zeros((batch_size, self.config.main.horizon, deterministics_size)).to(self.device)
#imagine trajectories
for t in range(self.config.main.horizon):
# do not include the starting state
action = self.actor(state, deterministics)
deterministics = self.rssm.recurrent(state, action, deterministics)
_, state = self.rssm.transition(deterministics)
state_trajectories[:, t, :] = state
deterministics_trajectories[:, t, :] = deterministics
'''
After imagining, we have both the state trajectories and deterministic trajectories, which can be used to create latent states.
- state_trajectories (N, HORIZON_LEN)
- deteerministic_trajectories (N, HORIZON_LEN)
'''
#actor update
#compute rewards for each trajectories
rewards = self.reward(state_trajectories, deterministics_trajectories)
rewards_dist = torch.distributions.Normal(rewards, 1)
rewards_dist = torch.distributions.Independent(rewards_dist, 1)
rewards = rewards_dist.mode
if self.config.main.continue_loss:
_, conts_dist = self.cont_net(state_trajectories, deterministics_trajectories)
continues = conts_dist.mean
else:
continues = self.config.main.discount * torch.ones_like(rewards)
values = self.critic(state_trajectories, deterministics_trajectories).mode
#calculate trajectories returns
#returns should have shape (N, HORIZON_LEN - 1, 1) (last values are ignored due to nature of bootstrapping)
returns = td_lambda(
rewards,
continues,
values,
self.config.main.lambda_,
self.device
)
#culm product for discount
discount = torch.cumprod(torch.cat((
torch.ones_like(continues[:, :1]).to(self.device),
continues[:, :-2]
), 1), 1).detach()
# actor optimizing
actor_loss = -(discount * returns).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
nn.utils.clip_grad_norm_(
self.actor.parameters(),
self.config.main.clip_grad,
norm_type=self.config.main.grad_norm_type,
)
self.actor_optimizer.step()
# critic optimizing
values_dist = self.critic(state_trajectories[:, :-1].detach(), deterministics_trajectories[:, :-1].detach())
critic_loss = -(discount.squeeze() * values_dist.log_prob(returns.detach())).mean()
self.critic_optimizer.zero_grad()
critic_loss.backward()
nn.utils.clip_grad_norm_(
self.critic.parameters(),
self.config.main.clip_grad,
norm_type=self.config.main.grad_norm_type,
)
self.critic_optimizer.step()
metrics = {
'Behavorial_model/Actor': actor_loss.item(),
'Behavorial_model/Critic': critic_loss.item()
}
log_metrics(metrics, self.gradient_step, self.writer, self.wandb_writer)
@torch.no_grad()
def data_collection(self, num_episodes, eval=False):
"""data collection method. Roll out agent a number of episodes and collect data
If eval=True. The agent is set for evaluation mode with no exploration noise and data collection
Args:
num_episodes (int): number of episodes
eval (bool): Evaluation mode. Defaults to False.
random (bool): Random mode. Defaults to False.
Returns:
average_score: average score over number of rollout episodes
"""
score = 0
ep = 0
obs, _ = self.env.reset()
#initialized all zeros
posterior = torch.zeros((1, self.config.main.stochastic_size)).to(self.device)
deterministic = torch.zeros((1, self.config.main.deterministic_size)).to(self.device)
action = torch.zeros((1, self.action_size)).to(self.device)
while ep < num_episodes:
embed_obs = self.encoder(torch.from_numpy(obs).to(self.device, dtype=torch.float)) #(1, embed_obs_sz)
deterministic = self.rssm.recurrent(posterior, action, deterministic)
_, posterior = self.rssm.representation(embed_obs, deterministic)
actor_out = self.actor(posterior, deterministic)
#detail: add exploration noise if not in evaluation mode
if not eval:
actions = actor_out.cpu().numpy()
if self.config.env.discrete:
if np.random.rand() < self.epsilon:
action = self.env.action_space.sample()
else:
action = np.argmax(actions)
else:
mean_noise = self.config.main.mean_noise
std_noise = self.config.main.std_noise
normal_dist = torch.distributions.Normal(actor_out + mean_noise, std_noise)
sampled_action = normal_dist.sample().cpu().numpy()
actions = np.clip(sampled_action, a_min=-1, a_max=1)
action = actions[0]
else:
actions = actor_out.cpu().numpy()
if self.config.env.discrete:
action = np.argmax(actions)
else:
actions = np.clip(actions, a_min=-1, a_max=1)
action = actions[0]
next_obs, reward, termination, truncation, info = self.env.step(action)
if not eval:
self.buffer.add(obs, actions, reward, termination | truncation)
self.env_step += self.config.env.action_repeat
obs = next_obs
action = actor_out
if "episode" in info:
cur_score = info["episode"]["r"][0]
score += cur_score
obs, _ = self.env.reset()
ep += 1
if 'video_path' in info and self.wandb_writer:
self.wandb_writer.log({'performance/videos': wandb.Video(info['video_path'], format='webm')})
log_metrics({'performance/training score': cur_score}, self.env_step, self.writer, self.wandb_writer)
posterior = torch.zeros((1, self.config.main.stochastic_size)).to(self.device)
deterministic = torch.zeros((1, self.config.main.deterministic_size)).to(self.device)
action = torch.zeros((1, self.action_size)).to(self.device)
return score/num_episodes |