--- language: en tags: - en - english - gpt2 - gpt3 - text-generation - lm - nlp datasets: - cnn_dailymail widget: - text: "Ever noticed how plane seats appear to be getting smaller and smaller? " inference: parameters: max_length: 120 do_sample: True temperature: 1.0 --- # GPT-3 small Pretrained GPT-3 small, it's architecture intentionally resembles that of GPT-3, model was trained on CNN Daily Mail News dataset for text generation # How to use the model ~~~~ from transformers import GPT2Tokenizer, GPTNeoForCausalLM tokenizer = GPT2Tokenizer.from_pretrained('gpt3-small-finetune-cnndaily-news-news') model = GPTNeoForCausalLM.from_pretrained('gpt3-small-finetune-cnndaily-news-news') text = "Ever noticed how plane seats appear to be getting smaller and smaller? " input_ids = tokenizer.encode(text, return_tensors='pt') max_length = 150 sample_outputs = model.generate(input_ids, do_sample=True, max_length=max_length) for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist()))) print('\n---') ~~~~ ## Author ` Phan Minh Toan `