mini1013 commited on
Commit
6121606
1 Parent(s): 477af3d

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 원목 듀얼 모니터받침대 미송 B타입 M 주식회사 제이테크(J-TECH)
14
+ - text: 대형 게이밍모니터거치대 카멜마운트 PMA-2U USB지원 32인치 거치가능 모니터암 블랙 (주)순천물류
15
+ - text: 카멜마운트 CMA2V 듀얼 벽면 밀착형 상하 거치대 모니터암 블랙 주식회사 카멜인터내셔널
16
+ - text: 알파스캔 AOC AM400 시에라 블루 싱글 모니터암 컴퓨터 27인치 32인치 브라켓 AM400 로즈쿼츠 주식회사 멀티스캔텍
17
+ - text: 카멜인터내셔널 카멜마운트 고든 DMA-DSS 벽면 밀착형 듀얼 모니터암 (주)아이티엔조이
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.8586497890295358
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 6 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 5 | <ul><li>'(주)근호컴 [리버네트워크]USB 2.0 리피터 전용 전원 어댑터 (NX-USBEXPW) (주)근호컴'</li><li>'NEXI 넥시 정품 NX-USBEXPW아답터 (NX0284) (주)유니정보통신'</li><li>'국산 12V 5A 모니터 아답터 ML-125A 헤라유통'</li></ul> |
66
+ | 3 | <ul><li>'카멜마운트 GDA3 고든 디자인 모니터 거치대 모니터암 듀얼 블랙 주식회사 카멜인터내셔널'</li><li>'카멜 CA2 화이트 나뭉'</li><li>'마루느루 마운트뷰 MV-G1A 셜크'</li></ul> |
67
+ | 0 | <ul><li>'셋탑 박스 게임기 리모컨 수납 TV 모니터 TOP 공간 선반 공유기 거치대 아이디어윙'</li><li>'리모컨수납 TV 모니터 TOP 공간선반 Black 연상연하'</li><li>'애니포트 TV거치대 엘마운트 다용도 멀티 선반 S900 이스토어'</li></ul> |
68
+ | 1 | <ul><li>'ELLOVEN 엘로벤 모니터스탠드+서랍 엘로벤 스탠드 앤트러 (804.851.02) 랩앤툴스'</li><li>'썬엔원 유보드 모니터받침대 U-BOARD Basic [화이트] 강화유리 / 유리색상: 투명 블랙 (주)세븐앤씨'</li><li>'앱코 MES100 사이드 폴딩 모니터 받침대 선반 받침 서랍 데스크 정리 블랙 앱코 MES100 블랙 (주)드림팩토리샵'</li></ul> |
69
+ | 2 | <ul><li>'아이존아이앤디 EZ MSM-10 아이러브드라이브(I Love Drive)'</li><li>'아이존아이앤디 EZ MSM-10/EZ MSM-10/조절브라켓/모니터스탠드/높낮이조절/조절스탠드/모니터홀타입/홀타입스탠드 EZ MSM-10 기쁘다희샵'</li><li>'루나랩 베사확장브라켓 200x100 200x200 주식회사 루나'</li></ul> |
70
+ | 4 | <ul><li>'지클릭커 휴 쉴드 PET 부착식 정보보호 모니터 보안필름 22인치 가이드컴퓨터'</li><li>'힐링쉴드 11890340 22인치 모니터 블루라이트차단 보호필름 거치식 조립형 양면필터 온라인정품인증점'</li><li>'지클릭커 휴 쉴드 PET 부착식 정보보호 모니터 보안필름 22인치 주식회사 리더샵'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Metric |
76
+ |:--------|:-------|
77
+ | **all** | 0.8586 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("mini1013/master_cate_el10")
96
+ # Run inference
97
+ preds = model("원목 듀얼 모니터받침대 미송 B타입 M 주식회사 제이테크(J-TECH)")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:-------|:----|
129
+ | Word count | 4 | 9.9725 | 24 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:------|:----------------------|
133
+ | 0 | 50 |
134
+ | 1 | 50 |
135
+ | 2 | 13 |
136
+ | 3 | 50 |
137
+ | 4 | 5 |
138
+ | 5 | 50 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (512, 512)
142
+ - num_epochs: (20, 20)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - num_iterations: 40
146
+ - body_learning_rate: (2e-05, 2e-05)
147
+ - head_learning_rate: 2e-05
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - seed: 42
155
+ - eval_max_steps: -1
156
+ - load_best_model_at_end: False
157
+
158
+ ### Training Results
159
+ | Epoch | Step | Training Loss | Validation Loss |
160
+ |:-------:|:----:|:-------------:|:---------------:|
161
+ | 0.0286 | 1 | 0.4958 | - |
162
+ | 1.4286 | 50 | 0.0386 | - |
163
+ | 2.8571 | 100 | 0.0016 | - |
164
+ | 4.2857 | 150 | 0.0001 | - |
165
+ | 5.7143 | 200 | 0.0 | - |
166
+ | 7.1429 | 250 | 0.0 | - |
167
+ | 8.5714 | 300 | 0.0 | - |
168
+ | 10.0 | 350 | 0.0 | - |
169
+ | 11.4286 | 400 | 0.0001 | - |
170
+ | 12.8571 | 450 | 0.0 | - |
171
+ | 14.2857 | 500 | 0.0001 | - |
172
+ | 15.7143 | 550 | 0.0 | - |
173
+ | 17.1429 | 600 | 0.0001 | - |
174
+ | 18.5714 | 650 | 0.0 | - |
175
+ | 20.0 | 700 | 0.0 | - |
176
+
177
+ ### Framework Versions
178
+ - Python: 3.10.12
179
+ - SetFit: 1.1.0.dev0
180
+ - Sentence Transformers: 3.1.1
181
+ - Transformers: 4.46.1
182
+ - PyTorch: 2.4.0+cu121
183
+ - Datasets: 2.20.0
184
+ - Tokenizers: 0.20.0
185
+
186
+ ## Citation
187
+
188
+ ### BibTeX
189
+ ```bibtex
190
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
191
+ doi = {10.48550/ARXIV.2209.11055},
192
+ url = {https://arxiv.org/abs/2209.11055},
193
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
194
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
195
+ title = {Efficient Few-Shot Learning Without Prompts},
196
+ publisher = {arXiv},
197
+ year = {2022},
198
+ copyright = {Creative Commons Attribution 4.0 International}
199
+ }
200
+ ```
201
+
202
+ <!--
203
+ ## Glossary
204
+
205
+ *Clearly define terms in order to be accessible across audiences.*
206
+ -->
207
+
208
+ <!--
209
+ ## Model Card Authors
210
+
211
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
212
+ -->
213
+
214
+ <!--
215
+ ## Model Card Contact
216
+
217
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
218
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_el",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd81a58591443f3431edb98aafb2279ca0bccf2f0441afcf127626f8b9c4b2f0
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a82fdefd8f7774d70740ddbe6ae5947f8213d08042a16cc58adcc4b6f1df9341
3
+ size 37799
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff