File size: 16,673 Bytes
4df227c
 
 
7924c12
4df227c
 
 
ec8e266
4df227c
 
7924c12
0972166
ec8e266
 
 
 
 
 
 
2bad2c9
4df227c
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8e266
4df227c
 
 
 
 
 
 
ec8e266
 
 
 
 
4df227c
ec8e266
4df227c
7924c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4df227c
 
 
 
ec8e266
 
4df227c
 
 
 
 
 
 
 
 
 
 
ec8e266
 
4df227c
ec8e266
4df227c
0972166
 
 
 
f057c1c
e315f16
 
 
 
 
0972166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e315f16
 
0972166
e315f16
 
 
0972166
e315f16
 
0972166
 
e315f16
0972166
 
 
e315f16
 
0972166
 
 
 
 
 
 
 
e315f16
 
 
 
 
0972166
 
 
 
 
 
 
 
 
 
 
 
 
e315f16
 
 
 
 
0972166
 
 
 
 
 
e315f16
 
 
 
 
 
 
 
 
 
0972166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e315f16
 
 
0972166
 
 
 
 
e315f16
 
 
 
 
 
 
 
0972166
 
 
 
 
 
e315f16
 
 
 
 
0972166
 
 
 
 
 
 
e315f16
 
 
 
 
0972166
 
 
 
 
 
 
e315f16
 
 
 
 
0972166
 
 
 
 
 
 
e315f16
 
 
 
 
0972166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e315f16
0972166
 
e315f16
 
0972166
e315f16
 
 
 
 
 
 
 
 
 
 
 
 
0972166
 
e315f16
0972166
 
e315f16
 
0972166
e315f16
 
0972166
 
 
 
 
 
 
 
e315f16
 
 
 
0972166
 
 
 
 
 
e315f16
0972166
 
e315f16
0972166
 
 
 
 
 
 
e315f16
 
 
0972166
 
 
 
 
 
 
 
e315f16
0972166
 
 
 
 
 
e315f16
0972166
 
 
 
 
 
 
 
 
 
 
 
 
 
e315f16
0972166
 
 
e315f16
0972166
 
4df227c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
---
library_name: model2vec
license: mit
model_name: potion-retrieval-32M
tags:
- embeddings
- static-embeddings
- sentence-transformers
---



# potion-retrieval-32M Model Card

<div align="center">
  <img width="35%" alt="Model2Vec logo" src="https://raw.githubusercontent.com/MinishLab/model2vec/main/assets/images/logo_v2.png">
</div>


This Model2Vec model is optmized for retrieval tasks. It is a finetune of [potion-base-32M](https://huggingface.co/minishlab/potion-base-32M). It's finetuned using a modified version of the training approach described in [this blogpost](https://huggingface.co/blog/static-embeddings). It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical. 


## Installation

Install model2vec using pip:
```
pip install model2vec
```

## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec import StaticModel
# Load a pretrained Model2Vec model
model = StaticModel.from_pretrained("minishlab/potion-retrieval-32M")
# Compute text embeddings
embeddings = model.encode(["Example sentence"])
```


## How it works

Model2vec creates a small, static model that outperforms other static embedding models by a large margin on all tasks on [MTEB](https://huggingface.co/spaces/mteb/leaderboard). This model is pre-trained using [Tokenlearn](https://github.com/MinishLab/tokenlearn). It's created using the following steps:
- Distillation: first, a model is distilled from a sentence transformer model using Model2Vec.
- Training data creation: the sentence transformer model is used to create training data by creating mean output embeddings on a large corpus.
- Training: the distilled model is trained on the training data using Tokenlearn.
- Post-training re-regularization: after training, the model is re-regularized by weighting the tokens based on their frequency, applying PCA, and finally applying [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx).

The results for this model can be found on the [Model2Vec results page](https://github.com/MinishLab/model2vec/blob/main/results/README.md).

## Results

The results for this model are shown in the table below. The full Model2Vec results for all models can be found on the [Model2Vec results page](https://github.com/MinishLab/model2vec/blob/main/results/README.md).
```
Average (All)                                                 49.73
Average (MTEB)                                                49.76
Classification                                                59.56
Clustering                                                    30.55
PairClassification                                            76.38
Reranking                                                     50.05
Retrieval                                                     36.35
STS                                                           73.22
Summarization                                                 28.85
PEARL                                                         49.31
WordSim                                                       50.02
```

## Additional Resources

- [All Model2Vec models on the hub](https://huggingface.co/models?library=model2vec)
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Tokenlearn repo](https://github.com/MinishLab/tokenlearn)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/blob/main/results/README.md)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)

## Library Authors

Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).

## Citation

Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@software{minishlab2024model2vec,
  authors = {Stephan Tulkens and Thomas van Dongen},
  title = {Model2Vec: The Fastest State-of-the-Art Static Embeddings in the World},
  year = {2024},
  url = {https://github.com/MinishLab/model2vec}
}
```

## Reproducibility

The following script can be used to reproduce this model. All credits go to [Tom Aarsen](https://huggingface.co/tomaarsen) for this fine-tuning approach and code he introduced in his [blogpost](https://huggingface.co/blog/static-embeddings). We make a few modifcations to the original code, namely:

- We start with a pre-trained Model2Vec model ([potion-base-32M](https://huggingface.co/minishlab/potion-base-32M)).
- We reduce the dataset size by a factor of 10. During experiments we saw that we didn't need the full dataset for the model to converge.
- We decease the learning rate and train for 3 epochs instead of 1. Using a high learning rate wipes the effects of using a pre-trained model.

```python
import random
import logging
from datasets import load_dataset, Dataset, DatasetDict
from sentence_transformers import (
    SentenceTransformer,
    SentenceTransformerTrainer,
    SentenceTransformerTrainingArguments,
    SentenceTransformerModelCardData,
)
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
from sentence_transformers.evaluation import NanoBEIREvaluator
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
import wandb

logging.basicConfig(
    format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
)
random.seed(12)


def load_train_eval_datasets(factor: int = 1):
    """
    Loads train and eval datasets from disk if available. Otherwise, downloads 
    them from Hugging Face, preprocesses, and saves them to disk. If `factor` is 
    greater than 1, returns a fraction (1/factor) of each dataset subset.

    :param factor: The factor by which the data is reduced. If factor=1, no reduction is performed.
    :return: (train_dataset: DatasetDict, eval_dataset: DatasetDict)
    """
    try:
        # Try loading from disk
        train_dataset = DatasetDict.load_from_disk("datasets/train_dataset")
        eval_dataset = DatasetDict.load_from_disk("datasets/eval_dataset")
    except FileNotFoundError:
        print("Prebuilt datasets not found on disk. Building from scratch...")

        print("Loading gooaq dataset...")
        gooaq_dataset = load_dataset("sentence-transformers/gooaq", split="train")
        gooaq_dataset_dict = gooaq_dataset.train_test_split(test_size=10_000, seed=12)
        gooaq_train_dataset: Dataset = gooaq_dataset_dict["train"]
        gooaq_eval_dataset: Dataset = gooaq_dataset_dict["test"]
        print("Loaded gooaq dataset.")

        print("Loading msmarco dataset...")
        msmarco_dataset = load_dataset(
            "sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1",
            "triplet",
            split="train"
        )
        msmarco_dataset_dict = msmarco_dataset.train_test_split(test_size=10_000, seed=12)
        msmarco_train_dataset: Dataset = msmarco_dataset_dict["train"]
        msmarco_eval_dataset: Dataset = msmarco_dataset_dict["test"]
        print("Loaded msmarco dataset.")

        print("Loading squad dataset...")
        squad_dataset = load_dataset("sentence-transformers/squad", split="train")
        squad_dataset_dict = squad_dataset.train_test_split(test_size=10_000, seed=12)
        squad_train_dataset: Dataset = squad_dataset_dict["train"]
        squad_eval_dataset: Dataset = squad_dataset_dict["test"]
        print("Loaded squad dataset.")

        print("Loading s2orc dataset...")
        s2orc_dataset = load_dataset(
            "sentence-transformers/s2orc", 
            "title-abstract-pair", 
            split="train[:100000]"  # limit to 100k
        )
        s2orc_dataset_dict = s2orc_dataset.train_test_split(test_size=10_000, seed=12)
        s2orc_train_dataset: Dataset = s2orc_dataset_dict["train"]
        s2orc_eval_dataset: Dataset = s2orc_dataset_dict["test"]
        print("Loaded s2orc dataset.")

        print("Loading allnli dataset...")
        allnli_train_dataset = load_dataset(
            "sentence-transformers/all-nli", 
            "triplet", 
            split="train"
        )
        allnli_eval_dataset = load_dataset(
            "sentence-transformers/all-nli", 
            "triplet", 
            split="dev"
        )
        print("Loaded allnli dataset.")

        print("Loading paq dataset...")
        paq_dataset = load_dataset("sentence-transformers/paq", split="train")
        paq_dataset_dict = paq_dataset.train_test_split(test_size=10_000, seed=12)
        paq_train_dataset: Dataset = paq_dataset_dict["train"]
        paq_eval_dataset: Dataset = paq_dataset_dict["test"]
        print("Loaded paq dataset.")

        print("Loading trivia_qa dataset...")
        trivia_qa = load_dataset("sentence-transformers/trivia-qa", split="train")
        trivia_qa_dataset_dict = trivia_qa.train_test_split(test_size=5_000, seed=12)
        trivia_qa_train_dataset: Dataset = trivia_qa_dataset_dict["train"]
        trivia_qa_eval_dataset: Dataset = trivia_qa_dataset_dict["test"]
        print("Loaded trivia_qa dataset.")

        print("Loading msmarco_10m dataset...")
        msmarco_10m_dataset = load_dataset("bclavie/msmarco-10m-triplets", split="train")
        msmarco_10m_dataset_dict = msmarco_10m_dataset.train_test_split(
            test_size=10_000, seed=12
        )
        msmarco_10m_train_dataset: Dataset = msmarco_10m_dataset_dict["train"]
        msmarco_10m_eval_dataset: Dataset = msmarco_10m_dataset_dict["test"]
        print("Loaded msmarco_10m dataset.")

        print("Loading swim_ir dataset...")
        swim_ir_dataset = load_dataset(
            "nthakur/swim-ir-monolingual", 
            "en", 
            split="train"
        ).select_columns(["query", "text"])
        swim_ir_dataset_dict = swim_ir_dataset.train_test_split(
            test_size=10_000, seed=12
        )
        swim_ir_train_dataset: Dataset = swim_ir_dataset_dict["train"]
        swim_ir_eval_dataset: Dataset = swim_ir_dataset_dict["test"]
        print("Loaded swim_ir dataset.")

        # NOTE: 20 negatives
        print("Loading pubmedqa dataset...")
        pubmedqa_dataset = load_dataset(
            "sentence-transformers/pubmedqa", 
            "triplet-20", 
            split="train"
        )
        pubmedqa_dataset_dict = pubmedqa_dataset.train_test_split(test_size=100, seed=12)
        pubmedqa_train_dataset: Dataset = pubmedqa_dataset_dict["train"]
        pubmedqa_eval_dataset: Dataset = pubmedqa_dataset_dict["test"]
        print("Loaded pubmedqa dataset.")

        # NOTE: A lot of overlap with anchor/positives
        print("Loading miracl dataset...")
        miracl_dataset = load_dataset(
            "sentence-transformers/miracl", 
            "en-triplet-all", 
            split="train"
        )
        miracl_dataset_dict = miracl_dataset.train_test_split(test_size=10_000, seed=12)
        miracl_train_dataset: Dataset = miracl_dataset_dict["train"]
        miracl_eval_dataset: Dataset = miracl_dataset_dict["test"]
        print("Loaded miracl dataset.")

        # NOTE: A lot of overlap with anchor/positives
        print("Loading mldr dataset...")
        mldr_dataset = load_dataset(
            "sentence-transformers/mldr", 
            "en-triplet-all", 
            split="train"
        )
        mldr_dataset_dict = mldr_dataset.train_test_split(test_size=10_000, seed=12)
        mldr_train_dataset: Dataset = mldr_dataset_dict["train"]
        mldr_eval_dataset: Dataset = mldr_dataset_dict["test"]
        print("Loaded mldr dataset.")

        # NOTE: A lot of overlap with anchor/positives
        print("Loading mr_tydi dataset...")
        mr_tydi_dataset = load_dataset(
            "sentence-transformers/mr-tydi", 
            "en-triplet-all", 
            split="train"
        )
        mr_tydi_dataset_dict = mr_tydi_dataset.train_test_split(test_size=10_000, seed=12)
        mr_tydi_train_dataset: Dataset = mr_tydi_dataset_dict["train"]
        mr_tydi_eval_dataset: Dataset = mr_tydi_dataset_dict["test"]
        print("Loaded mr_tydi dataset.")

        train_dataset = DatasetDict({
            "gooaq": gooaq_train_dataset,
            "msmarco": msmarco_train_dataset,
            "squad": squad_train_dataset,
            "s2orc": s2orc_train_dataset,
            "allnli": allnli_train_dataset,
            "paq": paq_train_dataset,
            "trivia_qa": trivia_qa_train_dataset,
            "msmarco_10m": msmarco_10m_train_dataset,
            "swim_ir": swim_ir_train_dataset,
            "pubmedqa": pubmedqa_train_dataset,
            "miracl": miracl_train_dataset,
            "mldr": mldr_train_dataset,
            "mr_tydi": mr_tydi_train_dataset,
        })
        eval_dataset = DatasetDict({
            "gooaq": gooaq_eval_dataset,
            "msmarco": msmarco_eval_dataset,
            "squad": squad_eval_dataset,
            "s2orc": s2orc_eval_dataset,
            "allnli": allnli_eval_dataset,
            "paq": paq_eval_dataset,
            "trivia_qa": trivia_qa_eval_dataset,
            "msmarco_10m": msmarco_10m_eval_dataset,
            "swim_ir": swim_ir_eval_dataset,
            "pubmedqa": pubmedqa_eval_dataset,
            "miracl": miracl_eval_dataset,
            "mldr": mldr_eval_dataset,
            "mr_tydi": mr_tydi_eval_dataset,
        })

        # Save to disk for next time
        train_dataset.save_to_disk("datasets/train_dataset")
        eval_dataset.save_to_disk("datasets/eval_dataset")

        # Quit to avoid memory overhead on large datasets
        quit()

    # Reduce the dataset if factor > 1
    if factor > 1:
        for subset_name in train_dataset:
            ds = train_dataset[subset_name].shuffle(seed=42)
            new_len = len(ds) // factor
            train_dataset[subset_name] = ds.select(range(new_len))

        for subset_name in eval_dataset:
            ds = eval_dataset[subset_name].shuffle(seed=42)
            new_len = len(ds) // factor
            eval_dataset[subset_name] = ds.select(range(new_len))

    return train_dataset, eval_dataset


def main():
    wandb.init(entity="minishlab", project="minishlab")
    # 1. Load a model to finetune
    static_embedding = StaticEmbedding.from_model2vec("minishlab/potion-base-32M")

    # 2. Initialize the SentenceTransformer model
    model_name = "potion-retrieval-32M"
    model = SentenceTransformer(
        modules=[static_embedding],
        model_card_data=SentenceTransformerModelCardData(
            language="en",
            license="MIT",
            model_name=model_name,
        ),
    )

    # 3. Load training & evaluation datasets
    # NOTE: we reduce the total dataset size by a factor of 10 
    train_dataset, eval_dataset = load_train_eval_datasets(factor=10)
    print(train_dataset)

    # 4. Define a loss function
    loss = MultipleNegativesRankingLoss(model)
    loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512])

    # 5. Specify training arguments
    run_name = model_name
    epochs = 3
    lr = 0.05
    args = SentenceTransformerTrainingArguments(
        output_dir=f"models/{run_name}",
        num_train_epochs=epochs,
        per_device_train_batch_size=2048,
        per_device_eval_batch_size=2048,
        learning_rate=lr,
        warmup_ratio=0.1,
        fp16=False,
        bf16=True,
        batch_sampler=BatchSamplers.NO_DUPLICATES,
        multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
        eval_strategy="steps",
        eval_steps=250,
        save_strategy="steps",
        save_steps=250,
        save_total_limit=2,
        logging_steps=250,
        logging_first_step=True,
        run_name=run_name,
        report_to=["wandb"],
        load_best_model_at_end=True,
        metric_for_best_model="eval_NanoBEIR_mean_cosine_ndcg@10",
        greater_is_better=True,
    )

    # 6. Create an evaluator & evaluate the base model
    evaluator = NanoBEIREvaluator()
    evaluator(model)

    # 7. Create a trainer & train
    trainer = SentenceTransformerTrainer(
        model=model,
        args=args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        loss=loss,
        evaluator=evaluator,
    )
    trainer.train()

    # 8. Evaluate the trained model and save
    evaluator(model)
    model.save_pretrained(f"models/{run_name}/final")


if __name__ == "__main__":
    main()
```