File size: 16,673 Bytes
4df227c 7924c12 4df227c ec8e266 4df227c 7924c12 0972166 ec8e266 2bad2c9 4df227c ec8e266 4df227c ec8e266 4df227c ec8e266 4df227c 7924c12 4df227c ec8e266 4df227c ec8e266 4df227c ec8e266 4df227c 0972166 f057c1c e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 e315f16 0972166 4df227c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
---
library_name: model2vec
license: mit
model_name: potion-retrieval-32M
tags:
- embeddings
- static-embeddings
- sentence-transformers
---
# potion-retrieval-32M Model Card
<div align="center">
<img width="35%" alt="Model2Vec logo" src="https://raw.githubusercontent.com/MinishLab/model2vec/main/assets/images/logo_v2.png">
</div>
This Model2Vec model is optmized for retrieval tasks. It is a finetune of [potion-base-32M](https://huggingface.co/minishlab/potion-base-32M). It's finetuned using a modified version of the training approach described in [this blogpost](https://huggingface.co/blog/static-embeddings). It uses static embeddings, allowing text embeddings to be computed orders of magnitude faster on both GPU and CPU. It is designed for applications where computational resources are limited or where real-time performance is critical.
## Installation
Install model2vec using pip:
```
pip install model2vec
```
## Usage
Load this model using the `from_pretrained` method:
```python
from model2vec import StaticModel
# Load a pretrained Model2Vec model
model = StaticModel.from_pretrained("minishlab/potion-retrieval-32M")
# Compute text embeddings
embeddings = model.encode(["Example sentence"])
```
## How it works
Model2vec creates a small, static model that outperforms other static embedding models by a large margin on all tasks on [MTEB](https://huggingface.co/spaces/mteb/leaderboard). This model is pre-trained using [Tokenlearn](https://github.com/MinishLab/tokenlearn). It's created using the following steps:
- Distillation: first, a model is distilled from a sentence transformer model using Model2Vec.
- Training data creation: the sentence transformer model is used to create training data by creating mean output embeddings on a large corpus.
- Training: the distilled model is trained on the training data using Tokenlearn.
- Post-training re-regularization: after training, the model is re-regularized by weighting the tokens based on their frequency, applying PCA, and finally applying [SIF weighting](https://openreview.net/pdf?id=SyK00v5xx).
The results for this model can be found on the [Model2Vec results page](https://github.com/MinishLab/model2vec/blob/main/results/README.md).
## Results
The results for this model are shown in the table below. The full Model2Vec results for all models can be found on the [Model2Vec results page](https://github.com/MinishLab/model2vec/blob/main/results/README.md).
```
Average (All) 49.73
Average (MTEB) 49.76
Classification 59.56
Clustering 30.55
PairClassification 76.38
Reranking 50.05
Retrieval 36.35
STS 73.22
Summarization 28.85
PEARL 49.31
WordSim 50.02
```
## Additional Resources
- [All Model2Vec models on the hub](https://huggingface.co/models?library=model2vec)
- [Model2Vec Repo](https://github.com/MinishLab/model2vec)
- [Tokenlearn repo](https://github.com/MinishLab/tokenlearn)
- [Model2Vec Results](https://github.com/MinishLab/model2vec/blob/main/results/README.md)
- [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials)
## Library Authors
Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
## Citation
Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work.
```
@software{minishlab2024model2vec,
authors = {Stephan Tulkens and Thomas van Dongen},
title = {Model2Vec: The Fastest State-of-the-Art Static Embeddings in the World},
year = {2024},
url = {https://github.com/MinishLab/model2vec}
}
```
## Reproducibility
The following script can be used to reproduce this model. All credits go to [Tom Aarsen](https://huggingface.co/tomaarsen) for this fine-tuning approach and code he introduced in his [blogpost](https://huggingface.co/blog/static-embeddings). We make a few modifcations to the original code, namely:
- We start with a pre-trained Model2Vec model ([potion-base-32M](https://huggingface.co/minishlab/potion-base-32M)).
- We reduce the dataset size by a factor of 10. During experiments we saw that we didn't need the full dataset for the model to converge.
- We decease the learning rate and train for 3 epochs instead of 1. Using a high learning rate wipes the effects of using a pre-trained model.
```python
import random
import logging
from datasets import load_dataset, Dataset, DatasetDict
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
SentenceTransformerModelCardData,
)
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
from sentence_transformers.training_args import BatchSamplers, MultiDatasetBatchSamplers
from sentence_transformers.evaluation import NanoBEIREvaluator
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
import wandb
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
)
random.seed(12)
def load_train_eval_datasets(factor: int = 1):
"""
Loads train and eval datasets from disk if available. Otherwise, downloads
them from Hugging Face, preprocesses, and saves them to disk. If `factor` is
greater than 1, returns a fraction (1/factor) of each dataset subset.
:param factor: The factor by which the data is reduced. If factor=1, no reduction is performed.
:return: (train_dataset: DatasetDict, eval_dataset: DatasetDict)
"""
try:
# Try loading from disk
train_dataset = DatasetDict.load_from_disk("datasets/train_dataset")
eval_dataset = DatasetDict.load_from_disk("datasets/eval_dataset")
except FileNotFoundError:
print("Prebuilt datasets not found on disk. Building from scratch...")
print("Loading gooaq dataset...")
gooaq_dataset = load_dataset("sentence-transformers/gooaq", split="train")
gooaq_dataset_dict = gooaq_dataset.train_test_split(test_size=10_000, seed=12)
gooaq_train_dataset: Dataset = gooaq_dataset_dict["train"]
gooaq_eval_dataset: Dataset = gooaq_dataset_dict["test"]
print("Loaded gooaq dataset.")
print("Loading msmarco dataset...")
msmarco_dataset = load_dataset(
"sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1",
"triplet",
split="train"
)
msmarco_dataset_dict = msmarco_dataset.train_test_split(test_size=10_000, seed=12)
msmarco_train_dataset: Dataset = msmarco_dataset_dict["train"]
msmarco_eval_dataset: Dataset = msmarco_dataset_dict["test"]
print("Loaded msmarco dataset.")
print("Loading squad dataset...")
squad_dataset = load_dataset("sentence-transformers/squad", split="train")
squad_dataset_dict = squad_dataset.train_test_split(test_size=10_000, seed=12)
squad_train_dataset: Dataset = squad_dataset_dict["train"]
squad_eval_dataset: Dataset = squad_dataset_dict["test"]
print("Loaded squad dataset.")
print("Loading s2orc dataset...")
s2orc_dataset = load_dataset(
"sentence-transformers/s2orc",
"title-abstract-pair",
split="train[:100000]" # limit to 100k
)
s2orc_dataset_dict = s2orc_dataset.train_test_split(test_size=10_000, seed=12)
s2orc_train_dataset: Dataset = s2orc_dataset_dict["train"]
s2orc_eval_dataset: Dataset = s2orc_dataset_dict["test"]
print("Loaded s2orc dataset.")
print("Loading allnli dataset...")
allnli_train_dataset = load_dataset(
"sentence-transformers/all-nli",
"triplet",
split="train"
)
allnli_eval_dataset = load_dataset(
"sentence-transformers/all-nli",
"triplet",
split="dev"
)
print("Loaded allnli dataset.")
print("Loading paq dataset...")
paq_dataset = load_dataset("sentence-transformers/paq", split="train")
paq_dataset_dict = paq_dataset.train_test_split(test_size=10_000, seed=12)
paq_train_dataset: Dataset = paq_dataset_dict["train"]
paq_eval_dataset: Dataset = paq_dataset_dict["test"]
print("Loaded paq dataset.")
print("Loading trivia_qa dataset...")
trivia_qa = load_dataset("sentence-transformers/trivia-qa", split="train")
trivia_qa_dataset_dict = trivia_qa.train_test_split(test_size=5_000, seed=12)
trivia_qa_train_dataset: Dataset = trivia_qa_dataset_dict["train"]
trivia_qa_eval_dataset: Dataset = trivia_qa_dataset_dict["test"]
print("Loaded trivia_qa dataset.")
print("Loading msmarco_10m dataset...")
msmarco_10m_dataset = load_dataset("bclavie/msmarco-10m-triplets", split="train")
msmarco_10m_dataset_dict = msmarco_10m_dataset.train_test_split(
test_size=10_000, seed=12
)
msmarco_10m_train_dataset: Dataset = msmarco_10m_dataset_dict["train"]
msmarco_10m_eval_dataset: Dataset = msmarco_10m_dataset_dict["test"]
print("Loaded msmarco_10m dataset.")
print("Loading swim_ir dataset...")
swim_ir_dataset = load_dataset(
"nthakur/swim-ir-monolingual",
"en",
split="train"
).select_columns(["query", "text"])
swim_ir_dataset_dict = swim_ir_dataset.train_test_split(
test_size=10_000, seed=12
)
swim_ir_train_dataset: Dataset = swim_ir_dataset_dict["train"]
swim_ir_eval_dataset: Dataset = swim_ir_dataset_dict["test"]
print("Loaded swim_ir dataset.")
# NOTE: 20 negatives
print("Loading pubmedqa dataset...")
pubmedqa_dataset = load_dataset(
"sentence-transformers/pubmedqa",
"triplet-20",
split="train"
)
pubmedqa_dataset_dict = pubmedqa_dataset.train_test_split(test_size=100, seed=12)
pubmedqa_train_dataset: Dataset = pubmedqa_dataset_dict["train"]
pubmedqa_eval_dataset: Dataset = pubmedqa_dataset_dict["test"]
print("Loaded pubmedqa dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading miracl dataset...")
miracl_dataset = load_dataset(
"sentence-transformers/miracl",
"en-triplet-all",
split="train"
)
miracl_dataset_dict = miracl_dataset.train_test_split(test_size=10_000, seed=12)
miracl_train_dataset: Dataset = miracl_dataset_dict["train"]
miracl_eval_dataset: Dataset = miracl_dataset_dict["test"]
print("Loaded miracl dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading mldr dataset...")
mldr_dataset = load_dataset(
"sentence-transformers/mldr",
"en-triplet-all",
split="train"
)
mldr_dataset_dict = mldr_dataset.train_test_split(test_size=10_000, seed=12)
mldr_train_dataset: Dataset = mldr_dataset_dict["train"]
mldr_eval_dataset: Dataset = mldr_dataset_dict["test"]
print("Loaded mldr dataset.")
# NOTE: A lot of overlap with anchor/positives
print("Loading mr_tydi dataset...")
mr_tydi_dataset = load_dataset(
"sentence-transformers/mr-tydi",
"en-triplet-all",
split="train"
)
mr_tydi_dataset_dict = mr_tydi_dataset.train_test_split(test_size=10_000, seed=12)
mr_tydi_train_dataset: Dataset = mr_tydi_dataset_dict["train"]
mr_tydi_eval_dataset: Dataset = mr_tydi_dataset_dict["test"]
print("Loaded mr_tydi dataset.")
train_dataset = DatasetDict({
"gooaq": gooaq_train_dataset,
"msmarco": msmarco_train_dataset,
"squad": squad_train_dataset,
"s2orc": s2orc_train_dataset,
"allnli": allnli_train_dataset,
"paq": paq_train_dataset,
"trivia_qa": trivia_qa_train_dataset,
"msmarco_10m": msmarco_10m_train_dataset,
"swim_ir": swim_ir_train_dataset,
"pubmedqa": pubmedqa_train_dataset,
"miracl": miracl_train_dataset,
"mldr": mldr_train_dataset,
"mr_tydi": mr_tydi_train_dataset,
})
eval_dataset = DatasetDict({
"gooaq": gooaq_eval_dataset,
"msmarco": msmarco_eval_dataset,
"squad": squad_eval_dataset,
"s2orc": s2orc_eval_dataset,
"allnli": allnli_eval_dataset,
"paq": paq_eval_dataset,
"trivia_qa": trivia_qa_eval_dataset,
"msmarco_10m": msmarco_10m_eval_dataset,
"swim_ir": swim_ir_eval_dataset,
"pubmedqa": pubmedqa_eval_dataset,
"miracl": miracl_eval_dataset,
"mldr": mldr_eval_dataset,
"mr_tydi": mr_tydi_eval_dataset,
})
# Save to disk for next time
train_dataset.save_to_disk("datasets/train_dataset")
eval_dataset.save_to_disk("datasets/eval_dataset")
# Quit to avoid memory overhead on large datasets
quit()
# Reduce the dataset if factor > 1
if factor > 1:
for subset_name in train_dataset:
ds = train_dataset[subset_name].shuffle(seed=42)
new_len = len(ds) // factor
train_dataset[subset_name] = ds.select(range(new_len))
for subset_name in eval_dataset:
ds = eval_dataset[subset_name].shuffle(seed=42)
new_len = len(ds) // factor
eval_dataset[subset_name] = ds.select(range(new_len))
return train_dataset, eval_dataset
def main():
wandb.init(entity="minishlab", project="minishlab")
# 1. Load a model to finetune
static_embedding = StaticEmbedding.from_model2vec("minishlab/potion-base-32M")
# 2. Initialize the SentenceTransformer model
model_name = "potion-retrieval-32M"
model = SentenceTransformer(
modules=[static_embedding],
model_card_data=SentenceTransformerModelCardData(
language="en",
license="MIT",
model_name=model_name,
),
)
# 3. Load training & evaluation datasets
# NOTE: we reduce the total dataset size by a factor of 10
train_dataset, eval_dataset = load_train_eval_datasets(factor=10)
print(train_dataset)
# 4. Define a loss function
loss = MultipleNegativesRankingLoss(model)
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512])
# 5. Specify training arguments
run_name = model_name
epochs = 3
lr = 0.05
args = SentenceTransformerTrainingArguments(
output_dir=f"models/{run_name}",
num_train_epochs=epochs,
per_device_train_batch_size=2048,
per_device_eval_batch_size=2048,
learning_rate=lr,
warmup_ratio=0.1,
fp16=False,
bf16=True,
batch_sampler=BatchSamplers.NO_DUPLICATES,
multi_dataset_batch_sampler=MultiDatasetBatchSamplers.PROPORTIONAL,
eval_strategy="steps",
eval_steps=250,
save_strategy="steps",
save_steps=250,
save_total_limit=2,
logging_steps=250,
logging_first_step=True,
run_name=run_name,
report_to=["wandb"],
load_best_model_at_end=True,
metric_for_best_model="eval_NanoBEIR_mean_cosine_ndcg@10",
greater_is_better=True,
)
# 6. Create an evaluator & evaluate the base model
evaluator = NanoBEIREvaluator()
evaluator(model)
# 7. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
loss=loss,
evaluator=evaluator,
)
trainer.train()
# 8. Evaluate the trained model and save
evaluator(model)
model.save_pretrained(f"models/{run_name}/final")
if __name__ == "__main__":
main()
``` |