--- library_name: peft license: llama3.2 base_model: minpeter/Llama-3.2-1B-AlternateTokenizer-chatml tags: - generated_from_trainer datasets: - teknium/OpenHermes-2.5 model-index: - name: output results: [] pipeline_tag: text-generation --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: "./llama-1b" #base_model: teknium/Llama-3.1-AlternateTokenizer #tokenizer_config: teknium/Llama-3.1-AlternateTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: teknium/OpenHermes-2.5 type: chat_template chat_template: chatml field_messages: conversations message_field_role: from message_field_content: value shards: 800 save_safetensors: true auto_resume_from_checkpoints: false save_steps: 200 chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./output adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 # saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: <|begin_of_text|> eos_token: <|im_end|> pad_token: <|end_of_text|> # <--- unsloth config ---> unsloth_lora_mlp: true unsloth_lora_qkv: true unsloth_lora_o: true ```

# output This model was trained from scratch on the teknium/OpenHermes-2.5 dataset. It achieves the following results on the evaluation set: - Loss: 0.9959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0246 | 0.0370 | 1 | 1.1798 | | 1.2085 | 0.2593 | 7 | 1.1312 | | 1.1683 | 0.5185 | 14 | 1.0579 | | 1.0703 | 0.7778 | 21 | 1.0243 | | 1.0815 | 1.0370 | 28 | 1.0119 | | 1.2227 | 1.2963 | 35 | 1.0031 | | 1.1577 | 1.5556 | 42 | 0.9977 | | 1.1897 | 1.8148 | 49 | 0.9959 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0