mjwong commited on
Commit
711a02a
·
verified ·
1 Parent(s): e150c27

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -0
README.md CHANGED
@@ -71,13 +71,17 @@ The model can also be applied on NLI tasks like so:
71
  ```python
72
  import torch
73
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
74
  # device = "cuda:0" or "cpu"
75
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
 
76
  model_name = "mjwong/drama-base-xnli-anli"
77
  tokenizer = AutoTokenizer.from_pretrained(model_name)
78
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
 
79
  premise = "But I thought you'd sworn off coffee."
80
  hypothesis = "I thought that you vowed to drink more coffee."
 
81
  input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
82
  output = model(input["input_ids"].to(device))
83
  prediction = torch.softmax(output["logits"][0], -1).tolist()
 
71
  ```python
72
  import torch
73
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
74
+
75
  # device = "cuda:0" or "cpu"
76
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
77
+
78
  model_name = "mjwong/drama-base-xnli-anli"
79
  tokenizer = AutoTokenizer.from_pretrained(model_name)
80
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
81
+
82
  premise = "But I thought you'd sworn off coffee."
83
  hypothesis = "I thought that you vowed to drink more coffee."
84
+
85
  input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
86
  output = model(input["input_ids"].to(device))
87
  prediction = torch.softmax(output["logits"][0], -1).tolist()