File size: 5,096 Bytes
e88c64f
1c42c10
 
9d69fec
 
 
 
 
 
6625e2d
 
9d69fec
 
 
 
 
 
1c42c10
e88c64f
9d69fec
 
 
1c42c10
9d69fec
 
 
 
 
 
e88c64f
1c42c10
 
 
 
 
 
 
 
 
 
 
 
cb8c696
 
1c42c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb8c696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c42c10
6625e2d
1c42c10
6625e2d
 
ce14338
8ddc39b
6625e2d
8ddc39b
 
 
 
 
 
 
 
 
 
1c42c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
language:
- multilingual
- en
- ar
- bg
- de
- el
- es
- fr
- hi
- ru
- sw
- th
- tr
- ur
- vi
- zh
license: mit
datasets:
- xnli
pipeline_tag: zero-shot-classification
widget:
- text: Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU
  candidate_labels: politics, economy, entertainment, environment
base_model: intfloat/multilingual-e5-large
model-index:
- name: multilingual-e5-large-xnli
  results: []
---

# multilingual-e5-large-xnli

This model is a fine-tuned version of [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the XNLI dataset.

## Model description

[Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022

## How to use the model

### With the zero-shot classification pipeline

The model can be loaded with the `zero-shot-classification` pipeline like so:

```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",
                      model="mjwong/multilingual-e5-large-xnli")
```

You can then use this pipeline to classify sequences into any of the class names you specify.

```python
sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
candidate_labels = ["politics", "economy", "entertainment", "environment"]
classifier(sequence_to_classify, candidate_labels)
```

If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:

```python
candidate_labels = ["politics", "economy", "entertainment", "environment"]
classifier(sequence_to_classify, candidate_labels, multi_label=True)
```

### With manual PyTorch

The model can also be applied on NLI tasks like so:

```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# device = "cuda:0" or "cpu"
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_name = "mjwong/multilingual-e5-large-xnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

premise = "But I thought you'd sworn off coffee."
hypothesis = "I thought that you vowed to drink more coffee."

input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
output = model(input["input_ids"].to(device))
prediction = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
prediction = {name: round(float(pred) * 100, 2) for pred, name in zip(prediction, label_names)}
print(prediction)
```

### Eval results
The model was evaluated using the XNLI test sets on 15 languages: English (en), Arabic (ar), Bulgarian (bg), German (de), Greek (el), Spanish (es), French (fr), Hindi (hi), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnam (vi) and Chinese (zh). The metric used is accuracy.

|Datasets|en|ar|bg|de|el|es|fr|hi|ru|sw|th|tr|ur|vi|zh|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.849|0.768|0.803|0.800|0.792|0.809|0.805|0.738|0.782|0.728|0.756|0.766|0.713|0.787|0.785|
|[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.811|0.711|0.751|0.759|0.746|0.778|0.765|0.685|0.728|0.662|0.705|0.716|0.683|0.736|0.740|
|[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.867|0.791|0.832|0.825|0.823|0.837|0.824|0.778|0.806|0.749|0.787|0.793|0.738|0.813|0.808|
|[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.865|0.765|0.811|0.811|0.795|0.823|0.816|0.743|0.785|0.713|0.765|0.774|0.706|0.788|0.787|

The model was also evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.

|Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3|
| :---: | :---: | :---: | :---: | :---: | :---: |
|[multilingual-e5-base-xnli](https://huggingface.co/mjwong/multilingual-e5-base-xnli)|0.835|0.837|0.287|0.276|0.301|
|[multilingual-e5-base-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-base-xnli-anli)|0.814|0.811|0.588|0.437|0.439|
|[multilingual-e5-large-xnli](https://huggingface.co/mjwong/multilingual-e5-large-xnli)|0.865|0.865|0.312|0.316|0.300|
|[multilingual-e5-large-xnli-anli](https://huggingface.co/mjwong/multilingual-e5-large-xnli-anli)|0.863|0.863|0.623|0.456|0.455|

### Training hyperparameters

The following hyperparameters were used during training:

- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Framework versions
- Transformers 4.28.1
- Pytorch 1.12.1+cu116
- Datasets 2.11.0
- Tokenizers 0.12.1