Maxime Kuntz
commited on
Commit
·
ce9c83f
1
Parent(s):
42fc9f4
Second training
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -3.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -3.75 +/- 2.11
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ff935c9b39c8d6cd801f0a7e3df987183189b9dcabd98456bd92cedc818284d
|
3 |
+
size 108011
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f68b0ba1940>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f68b0b97f30>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1200000,
|
45 |
+
"_total_timesteps": 1200000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1676576411955454657,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOw/lPu9dizzDt+0+Ow/lPu9dizzDt+0+Ow/lPu9dizzDt+0+Ow/lPu9dizzDt+0+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9ts9v4x3Mr4Rrom/AAZZv8Xrp796l+o+Rju2v0dFZr/6I7U/JJ1avw+Ynj/sHHy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7D+U+712LPMO37T6XLXE83+5Bu7IreTw7D+U+712LPMO37T6XLXE83+5Bu7IreTw7D+U+712LPMO37T6XLXE83+5Bu7IreTw7D+U+712LPMO37T6XLXE83+5Bu7IreTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.44738182 0.01701256 0.46429262]\n [0.44738182 0.01701256 0.46429262]\n [0.44738182 0.01701256 0.46429262]\n [0.44738182 0.01701256 0.46429262]]",
|
60 |
+
"desired_goal": "[[-0.7416376 -0.17428416 -1.0756246 ]\n [-0.8477478 -1.3118826 0.45818692]\n [-1.4236839 -0.8994946 1.4151604 ]\n [-0.8539603 1.2390155 -0.9848163 ]]",
|
61 |
+
"observation": "[[ 0.44738182 0.01701256 0.46429262 0.01472034 -0.00295918 0.01520817]\n [ 0.44738182 0.01701256 0.46429262 0.01472034 -0.00295918 0.01520817]\n [ 0.44738182 0.01701256 0.46429262 0.01472034 -0.00295918 0.01520817]\n [ 0.44738182 0.01701256 0.46429262 0.01472034 -0.00295918 0.01520817]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKS2LvSExOz3somc+dR+4vDsJrj1FC/c6QtHEvVCQqT0nnzY+lCFoPQmVdjqlUD0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.06795723 0.04570115 0.22620744]\n [-0.02247594 0.08497854 0.0018848 ]\n [-0.09610225 0.08279479 0.1783415 ]\n [ 0.05667265 0.00094064 0.18487795]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrvTabKzkDsCUhpRSlIwBbJRLMowBdJRHQK6zzMwDeTF1fZQoaAZoCWgPQwgQP/89eL0VwJSGlFKUaBVLMmgWR0Cus46hg3LndX2UKGgGaAloD0MI6SyzCMWGEsCUhpRSlGgVSzJoFkdArrNNrGipN3V9lChoBmgJaA9DCNDukGKAZBPAlIaUUpRoFUsyaBZHQK6zEEOiFkB1fZQoaAZoCWgPQwjqeqLrws/2v5SGlFKUaBVLMmgWR0CutRMqjJuEdX2UKGgGaAloD0MI68TleAViBcCUhpRSlGgVSzJoFkdArrTVjgAIY3V9lChoBmgJaA9DCLSULCehlCDAlIaUUpRoFUsyaBZHQK60lPTodMl1fZQoaAZoCWgPQwhUqG4u/rYDwJSGlFKUaBVLMmgWR0CutFeIMz/IdX2UKGgGaAloD0MIWP/nMF9+B8CUhpRSlGgVSzJoFkdArrYoF7laKXV9lChoBmgJaA9DCESF6ubi1yHAlIaUUpRoFUsyaBZHQK616ixmkFh1fZQoaAZoCWgPQwjqkQa3tXUfwJSGlFKUaBVLMmgWR0CutamlqJuVdX2UKGgGaAloD0MIRWRYxRuJEsCUhpRSlGgVSzJoFkdArrVrdP+GXXV9lChoBmgJaA9DCN8WLNUFXAbAlIaUUpRoFUsyaBZHQK63NfWMCLd1fZQoaAZoCWgPQwhWKqio+kUUwJSGlFKUaBVLMmgWR0CutvgDq4YrdX2UKGgGaAloD0MIaogq/BluGsCUhpRSlGgVSzJoFkdArra3WUbDM3V9lChoBmgJaA9DCIVE2safaA3AlIaUUpRoFUsyaBZHQK62ePy08eV1fZQoaAZoCWgPQwhANPPkmoIHwJSGlFKUaBVLMmgWR0CuuE6TGHYZdX2UKGgGaAloD0MIvMrapnj8F8CUhpRSlGgVSzJoFkdArrgQzguRLnV9lChoBmgJaA9DCDKQZ5dvPQ7AlIaUUpRoFUsyaBZHQK63z/LDAJt1fZQoaAZoCWgPQwjl0CLb+Q4SwJSGlFKUaBVLMmgWR0Cut5Gh/RVqdX2UKGgGaAloD0MIfzMxXYi1HcCUhpRSlGgVSzJoFkdArrlYqwyIpHV9lChoBmgJaA9DCKUTCaaaGRHAlIaUUpRoFUsyaBZHQK65GouPFNt1fZQoaAZoCWgPQwhGKLaCpgURwJSGlFKUaBVLMmgWR0CuuNqYRdyDdX2UKGgGaAloD0MI9P3UeOm2EcCUhpRSlGgVSzJoFkdArricKLKmsXV9lChoBmgJaA9DCBizJasifA3AlIaUUpRoFUsyaBZHQK66aXjU/fR1fZQoaAZoCWgPQwiOBvAWSJAMwJSGlFKUaBVLMmgWR0CuuitgrpaBdX2UKGgGaAloD0MIOfHVjuL8FsCUhpRSlGgVSzJoFkdArrnqf4AS4HV9lChoBmgJaA9DCD6Skh6GthDAlIaUUpRoFUsyaBZHQK65rGdZq211fZQoaAZoCWgPQwj7srRTczkQwJSGlFKUaBVLMmgWR0Cuu2YB3iaRdX2UKGgGaAloD0MIXW4w1GGlD8CUhpRSlGgVSzJoFkdArrsoDFId2nV9lChoBmgJaA9DCM0f09o0NhHAlIaUUpRoFUsyaBZHQK665yRSxaB1fZQoaAZoCWgPQwhodt1bkVgEwJSGlFKUaBVLMmgWR0Cuuql9roGIdX2UKGgGaAloD0MIVvMcke+yDsCUhpRSlGgVSzJoFkdArrxbn/1g6XV9lChoBmgJaA9DCGzoZn+gvAzAlIaUUpRoFUsyaBZHQK68HeAuqWF1fZQoaAZoCWgPQwhvgQTFj9ELwJSGlFKUaBVLMmgWR0Cuu9zhHbypdX2UKGgGaAloD0MIYi0+BcBYJcCUhpRSlGgVSzJoFkdArrueeg+Ql3V9lChoBmgJaA9DCL3+JD53UhbAlIaUUpRoFUsyaBZHQK69SN0eU6h1fZQoaAZoCWgPQwg2zqYjgJsHwJSGlFKUaBVLMmgWR0CuvQtKh+OPdX2UKGgGaAloD0MI7UW0HVPXCcCUhpRSlGgVSzJoFkdArrzKbjLjgnV9lChoBmgJaA9DCH1AoDNpgxPAlIaUUpRoFUsyaBZHQK68jD1oQFt1fZQoaAZoCWgPQwhvg9pv7YQNwJSGlFKUaBVLMmgWR0CuvldkjHGTdX2UKGgGaAloD0MIo5I6AU3UG8CUhpRSlGgVSzJoFkdArr4ZS9/SY3V9lChoBmgJaA9DCC5U/rW8IhXAlIaUUpRoFUsyaBZHQK692Fj/dZd1fZQoaAZoCWgPQwh5B3jSwgUMwJSGlFKUaBVLMmgWR0CuvZrv9cbBdX2UKGgGaAloD0MIHzF6bqELDMCUhpRSlGgVSzJoFkdArr9iLdepoHV9lChoBmgJaA9DCCpSYWwhKAXAlIaUUpRoFUsyaBZHQK6/JPE87p51fZQoaAZoCWgPQwgHtHQF2ygNwJSGlFKUaBVLMmgWR0CuvuQI+nqFdX2UKGgGaAloD0MIjX+fceFwEsCUhpRSlGgVSzJoFkdArr6lmxt52XV9lChoBmgJaA9DCLMIxVbQBBLAlIaUUpRoFUsyaBZHQK7AfhH9WIZ1fZQoaAZoCWgPQwh5QNmUK1wewJSGlFKUaBVLMmgWR0CuwD/jjrAydX2UKGgGaAloD0MIFoTyPo6WFMCUhpRSlGgVSzJoFkdArsAAIY3vQXV9lChoBmgJaA9DCPRQ24ZRQCHAlIaUUpRoFUsyaBZHQK6/weNDMNd1fZQoaAZoCWgPQwhP6zao/ZYQwJSGlFKUaBVLMmgWR0CuwYKr7wazdX2UKGgGaAloD0MI1Xsqpz2FD8CUhpRSlGgVSzJoFkdArsFEkMTewnV9lChoBmgJaA9DCKW9wRcmkwrAlIaUUpRoFUsyaBZHQK7BBLOiWVx1fZQoaAZoCWgPQwgUs14M5fQRwJSGlFKUaBVLMmgWR0CuwMa6J66bdX2UKGgGaAloD0MIhetRuB5lEsCUhpRSlGgVSzJoFkdArsKVwo9cKXV9lChoBmgJaA9DCOgxyjMvZwrAlIaUUpRoFUsyaBZHQK7CWA1ejVR1fZQoaAZoCWgPQwiMuWsJ+bAfwJSGlFKUaBVLMmgWR0Cuwhd+gDigdX2UKGgGaAloD0MIwhIPKJsSDMCUhpRSlGgVSzJoFkdArsHbRrrPdHV9lChoBmgJaA9DCGsotRfRRhLAlIaUUpRoFUsyaBZHQK7EOCjDbah1fZQoaAZoCWgPQwhWm/9XHakSwJSGlFKUaBVLMmgWR0Cuw/q1w5vMdX2UKGgGaAloD0MI1Xq/0Y4LEMCUhpRSlGgVSzJoFkdArsO6S3b213V9lChoBmgJaA9DCPTAx2DFyQrAlIaUUpRoFUsyaBZHQK7DfKIznA91fZQoaAZoCWgPQwiJQzaQLpYHwJSGlFKUaBVLMmgWR0CuxnQAuIykdX2UKGgGaAloD0MIq3e4HRo2CcCUhpRSlGgVSzJoFkdArsY4ZVGTcXV9lChoBmgJaA9DCAKBzqRNFQrAlIaUUpRoFUsyaBZHQK7F+hxHXmN1fZQoaAZoCWgPQwgSwqONIzYJwJSGlFKUaBVLMmgWR0Cuxb4AS39adX2UKGgGaAloD0MIKJzdWiajBcCUhpRSlGgVSzJoFkdArsh7IBBAwHV9lChoBmgJaA9DCPxR1Jl7SArAlIaUUpRoFUsyaBZHQK7IP6P8yet1fZQoaAZoCWgPQwiYolwav9AIwJSGlFKUaBVLMmgWR0Cux/+u/1xsdX2UKGgGaAloD0MIwRw9fm+TD8CUhpRSlGgVSzJoFkdArsfB/XoTwnV9lChoBmgJaA9DCKsHzEOm/A/AlIaUUpRoFUsyaBZHQK7KMnvUjLV1fZQoaAZoCWgPQwjll8EYkdAgwJSGlFKUaBVLMmgWR0CuyfUN8VpLdX2UKGgGaAloD0MIb9Of/UiBFsCUhpRSlGgVSzJoFkdArsm1V/+bVnV9lChoBmgJaA9DCL9FJ0ut1yHAlIaUUpRoFUsyaBZHQK7Jd3pOerd1fZQoaAZoCWgPQwghy4KJPwoRwJSGlFKUaBVLMmgWR0Cuy4Nrj5sTdX2UKGgGaAloD0MIGcizy7ceDMCUhpRSlGgVSzJoFkdArstFfJFLFnV9lChoBmgJaA9DCDB/hcyVgQnAlIaUUpRoFUsyaBZHQK7LBJfYzzp1fZQoaAZoCWgPQwj9aaM6HWgQwJSGlFKUaBVLMmgWR0CuysZQP7N0dX2UKGgGaAloD0MI5+Jve4JUEcCUhpRSlGgVSzJoFkdArsxgMjNY83V9lChoBmgJaA9DCELMJVXbvR3AlIaUUpRoFUsyaBZHQK7MIiGFi8Z1fZQoaAZoCWgPQwjXwiy0c9oKwJSGlFKUaBVLMmgWR0Cuy+E5hjOLdX2UKGgGaAloD0MINlg4SfNXEMCUhpRSlGgVSzJoFkdArsui1LJ0XHV9lChoBmgJaA9DCHIYzF8h8wjAlIaUUpRoFUsyaBZHQK7NQHUMG5d1fZQoaAZoCWgPQwjcvHFSmPcLwJSGlFKUaBVLMmgWR0CuzQI0hvBKdX2UKGgGaAloD0MI1sQCX9GtF8CUhpRSlGgVSzJoFkdArszBn6Eal3V9lChoBmgJaA9DCI0MchdhuhHAlIaUUpRoFUsyaBZHQK7Mg2FWXC11fZQoaAZoCWgPQwgSFhVxOlkWwJSGlFKUaBVLMmgWR0CuzlAH3UQTdX2UKGgGaAloD0MIk//J370jEsCUhpRSlGgVSzJoFkdArs4RzDGcWnV9lChoBmgJaA9DCNTxmIHKmAfAlIaUUpRoFUsyaBZHQK7N0cpb2UV1fZQoaAZoCWgPQwh8nj9tVC8hwJSGlFKUaBVLMmgWR0CuzZNdqtYCdX2UKGgGaAloD0MIb37DRIMEE8CUhpRSlGgVSzJoFkdArs8tB2OhkHV9lChoBmgJaA9DCG02VmKelRjAlIaUUpRoFUsyaBZHQK7O7swco6V1fZQoaAZoCWgPQwhd+SzPg1sQwJSGlFKUaBVLMmgWR0Cuzq3YL9dedX2UKGgGaAloD0MI1xTI7CzaE8CUhpRSlGgVSzJoFkdArs5vb7CSBHV9lChoBmgJaA9DCLWlDvJ68AfAlIaUUpRoFUsyaBZHQK7QMz1schl1fZQoaAZoCWgPQwhMa9PYXgsSwJSGlFKUaBVLMmgWR0Cuz/Use4kNdX2UKGgGaAloD0MIeTpXlBKCBsCUhpRSlGgVSzJoFkdArs+1bVz6rXV9lChoBmgJaA9DCKBTkJ+NbBDAlIaUUpRoFUsyaBZHQK7Pd0nw5Np1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 60000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca8baf90638fd15daa604ec2f0e994de37d836872b6cfe533d3eb712a8c2bc63
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:779dc6a59549f6e67a3e2edc6e6405af6c267ece1bfb9095ef2e5ade6acc8913
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0eb06164c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0eb061a420>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676495505012385995, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALCvGPua4lDvxnw4/LCvGPua4lDvxnw4/LCvGPua4lDvxnw4/LCvGPua4lDvxnw4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuJdWP5BJqb231qg/0paQv30ozb9GbCy+4PSjPcjvOr+VRDq/9bViv3LavT6YK6G/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAsK8Y+5riUO/GfDj/4ptY7G9yyN2sTcrssK8Y+5riUO/GfDj/4ptY7G9yyN2sTcrssK8Y+5riUO/GfDj/4ptY7G9yyN2sTcrssK8Y+5riUO/GfDj/4ptY7G9yyN2sTcruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38704813 0.00453864 0.557128 ]\n [0.38704813 0.00453864 0.557128 ]\n [0.38704813 0.00453864 0.557128 ]\n [0.38704813 0.00453864 0.557128 ]]", "desired_goal": "[[ 0.83825254 -0.08265984 1.3190526 ]\n [-1.1296027 -1.6027981 -0.16838178]\n [ 0.08005691 -0.7302213 -0.727609 ]\n [-0.88558894 0.37080723 -1.2591429 ]]", "observation": "[[ 3.8704813e-01 4.5386432e-03 5.5712801e-01 6.5506659e-03\n 2.1321748e-05 -3.6937844e-03]\n [ 3.8704813e-01 4.5386432e-03 5.5712801e-01 6.5506659e-03\n 2.1321748e-05 -3.6937844e-03]\n [ 3.8704813e-01 4.5386432e-03 5.5712801e-01 6.5506659e-03\n 2.1321748e-05 -3.6937844e-03]\n [ 3.8704813e-01 4.5386432e-03 5.5712801e-01 6.5506659e-03\n 2.1321748e-05 -3.6937844e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5OravbT8v71iMbI9fYp5vUzOObyNG9U9f5UCvdIxJL3n1Is+qivRPN4uzb08qZI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10689333 -0.09374371 0.08700825]\n [-0.06092309 -0.01134069 0.10405646]\n [-0.03188085 -0.04008657 0.2731087 ]\n [ 0.02553352 -0.10018705 0.2864474 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf4P26uMhAMCUhpRSlIwBbJRLMowBdJRHQKZ28/47A+J1fZQoaAZoCWgPQwizfF2G/zQEwJSGlFKUaBVLMmgWR0Cmdp5QP7N0dX2UKGgGaAloD0MIHebLC7DP9L+UhpRSlGgVSzJoFkdApnZLutwJgXV9lChoBmgJaA9DCA360tufqwjAlIaUUpRoFUsyaBZHQKZ1+XoC+111fZQoaAZoCWgPQwiwql5+p+kRwJSGlFKUaBVLMmgWR0CmeHBkiD/VdX2UKGgGaAloD0MI36Y/+5EiBsCUhpRSlGgVSzJoFkdApnga0dBBzHV9lChoBmgJaA9DCK358ZcWhRHAlIaUUpRoFUsyaBZHQKZ3yCGvfTF1fZQoaAZoCWgPQwhHxmrz/4oIwJSGlFKUaBVLMmgWR0Cmd3Zq/M4cdX2UKGgGaAloD0MIAfkSKjj8CcCUhpRSlGgVSzJoFkdApnnUenyd4HV9lChoBmgJaA9DCGDnps04rQ/AlIaUUpRoFUsyaBZHQKZ5fnzxwyZ1fZQoaAZoCWgPQwioxks3iUHzv5SGlFKUaBVLMmgWR0CmeSsJpnHvdX2UKGgGaAloD0MI5xiQvd7dA8CUhpRSlGgVSzJoFkdApnjYOOKfnXV9lChoBmgJaA9DCFRVaCCWDQbAlIaUUpRoFUsyaBZHQKZ6yLUCq6x1fZQoaAZoCWgPQwiAETRmEgUVwJSGlFKUaBVLMmgWR0CmenK9PDYRdX2UKGgGaAloD0MIE51lFqGIEcCUhpRSlGgVSzJoFkdApnoffl6qsHV9lChoBmgJaA9DCO30g7pIIQbAlIaUUpRoFUsyaBZHQKZ5zJ8v25B1fZQoaAZoCWgPQwhG7unqjsUCwJSGlFKUaBVLMmgWR0Cme7ItthuwdX2UKGgGaAloD0MIDFhyFYs/BsCUhpRSlGgVSzJoFkdApntb9AHE/HV9lChoBmgJaA9DCHGvzFt1vQLAlIaUUpRoFUsyaBZHQKZ7CKeCkGl1fZQoaAZoCWgPQwjSVbq7zsb+v5SGlFKUaBVLMmgWR0CmerXUH6dldX2UKGgGaAloD0MI/Wg4ZW4eA8CUhpRSlGgVSzJoFkdApnycnmaH9HV9lChoBmgJaA9DCF3Aywwb5QrAlIaUUpRoFUsyaBZHQKZ8Rk1/DtR1fZQoaAZoCWgPQwjWNzC5UaQNwJSGlFKUaBVLMmgWR0Cme/MNDtw8dX2UKGgGaAloD0MIXI/C9SicBcCUhpRSlGgVSzJoFkdApnugLG7z1HV9lChoBmgJaA9DCDWzlgLSfv2/lIaUUpRoFUsyaBZHQKZ9h7HAAQx1fZQoaAZoCWgPQwiQ2sTJ/U4KwJSGlFKUaBVLMmgWR0CmfTGEPDpDdX2UKGgGaAloD0MIL8GpDySvA8CUhpRSlGgVSzJoFkdApnzeCbtqpXV9lChoBmgJaA9DCKCobFhTGfe/lIaUUpRoFUsyaBZHQKZ8iyOaOPx1fZQoaAZoCWgPQwjbUZyjjs7+v5SGlFKUaBVLMmgWR0CmfnJ6IFeOdX2UKGgGaAloD0MIqYWSyak9BMCUhpRSlGgVSzJoFkdApn4cKu0TlHV9lChoBmgJaA9DCLsNar+1swXAlIaUUpRoFUsyaBZHQKZ9yMhouf51fZQoaAZoCWgPQwjOqPkq+dgCwJSGlFKUaBVLMmgWR0CmfXYg7o0RdX2UKGgGaAloD0MI/3Vu2ozzBMCUhpRSlGgVSzJoFkdApn9Zhx5s03V9lChoBmgJaA9DCHlXPWAeAhDAlIaUUpRoFUsyaBZHQKZ/A2tuDSR1fZQoaAZoCWgPQwgQ641aYToGwJSGlFKUaBVLMmgWR0CmfrAMUh3adX2UKGgGaAloD0MIdQMF3slHC8CUhpRSlGgVSzJoFkdApn5dVYISlHV9lChoBmgJaA9DCEJ6ihwi7gXAlIaUUpRoFUsyaBZHQKaARdMTN+t1fZQoaAZoCWgPQwiqtpvgmwYNwJSGlFKUaBVLMmgWR0Cmf++hoM8YdX2UKGgGaAloD0MIiesYV1zcC8CUhpRSlGgVSzJoFkdApn+cTYdyUHV9lChoBmgJaA9DCKEUrdwL7AzAlIaUUpRoFUsyaBZHQKZ/SWXTmXB1fZQoaAZoCWgPQwjS/gdYq7YJwJSGlFKUaBVLMmgWR0CmgTMdkrf+dX2UKGgGaAloD0MIUhA8vr2rA8CUhpRSlGgVSzJoFkdApoDczsQd0nV9lChoBmgJaA9DCKuX32kyAwPAlIaUUpRoFUsyaBZHQKaAiWnjyWl1fZQoaAZoCWgPQwjM7PMY5TkLwJSGlFKUaBVLMmgWR0CmgDaEi+tbdX2UKGgGaAloD0MIIeo+AKlNAMCUhpRSlGgVSzJoFkdApoIYE+xGD3V9lChoBmgJaA9DCCwujspN9AbAlIaUUpRoFUsyaBZHQKaBweMhouh1fZQoaAZoCWgPQwi5/fLJioEDwJSGlFKUaBVLMmgWR0CmgW6P0Zm7dX2UKGgGaAloD0MIlGdeDruv/7+UhpRSlGgVSzJoFkdApoEb2vjfenV9lChoBmgJaA9DCBnjw+xlWwvAlIaUUpRoFUsyaBZHQKaDC83++/R1fZQoaAZoCWgPQwg6evzepj8DwJSGlFKUaBVLMmgWR0CmgrWH1vl2dX2UKGgGaAloD0MI3Qa139oJDMCUhpRSlGgVSzJoFkdApoJiNZNfxHV9lChoBmgJaA9DCML4adybPwHAlIaUUpRoFUsyaBZHQKaCD2Cdz4l1fZQoaAZoCWgPQwhkr3d/vLcIwJSGlFKUaBVLMmgWR0CmhAuYx+KCdX2UKGgGaAloD0MIk+F4PgPKBMCUhpRSlGgVSzJoFkdApoO2QyRB/3V9lChoBmgJaA9DCEpBt5c0ZgrAlIaUUpRoFUsyaBZHQKaDY0iyIHl1fZQoaAZoCWgPQwj/kenQ6XkBwJSGlFKUaBVLMmgWR0CmgxHAh0QsdX2UKGgGaAloD0MIXoJTH0ieDMCUhpRSlGgVSzJoFkdApoWWT3Zf2XV9lChoBmgJaA9DCFj+fFuwNATAlIaUUpRoFUsyaBZHQKaFQKziS7p1fZQoaAZoCWgPQwhQVgxXB5ARwJSGlFKUaBVLMmgWR0CmhO2pAD7qdX2UKGgGaAloD0MICoMyjSaXCMCUhpRSlGgVSzJoFkdApoSbUsnRcHV9lChoBmgJaA9DCK3CZoALkgPAlIaUUpRoFUsyaBZHQKaHED2alUJ1fZQoaAZoCWgPQwiLNVzkng4FwJSGlFKUaBVLMmgWR0CmhrreANG3dX2UKGgGaAloD0MIFW9kHvnDCMCUhpRSlGgVSzJoFkdApoZoJ1JUYXV9lChoBmgJaA9DCHCyDdyB+g3AlIaUUpRoFUsyaBZHQKaGFh/iHZd1fZQoaAZoCWgPQwiJCWr4FtYNwJSGlFKUaBVLMmgWR0CmiL9nbqQjdX2UKGgGaAloD0MIX8/XLJctAMCUhpRSlGgVSzJoFkdApohp0hePaXV9lChoBmgJaA9DCH8uGjIe5QbAlIaUUpRoFUsyaBZHQKaIFxQzk6t1fZQoaAZoCWgPQwj9TL1uEVgJwJSGlFKUaBVLMmgWR0Cmh8aQmu1XdX2UKGgGaAloD0MI/rj98slqBMCUhpRSlGgVSzJoFkdApoo/0Gu9vnV9lChoBmgJaA9DCOdWCKux5ALAlIaUUpRoFUsyaBZHQKaJ6jj7yhB1fZQoaAZoCWgPQwgkKelhaLUKwJSGlFKUaBVLMmgWR0CmiZeIuXeFdX2UKGgGaAloD0MIar3faMeNC8CUhpRSlGgVSzJoFkdApolFhAnlXHV9lChoBmgJaA9DCLGKNzKP3APAlIaUUpRoFUsyaBZHQKaLumCROlB1fZQoaAZoCWgPQwh0QBL27SQIwJSGlFKUaBVLMmgWR0Cmi2SmQ8wIdX2UKGgGaAloD0MIPEz75v6qAsCUhpRSlGgVSzJoFkdAposSG34KyHV9lChoBmgJaA9DCLsLlBRYwAjAlIaUUpRoFUsyaBZHQKaKv/d69kB1fZQoaAZoCWgPQwjwayQJwtUMwJSGlFKUaBVLMmgWR0CmjM23z+WGdX2UKGgGaAloD0MIhxbZzvfzDcCUhpRSlGgVSzJoFkdApox3b212JXV9lChoBmgJaA9DCCCySBPvQBDAlIaUUpRoFUsyaBZHQKaMI/nnuAt1fZQoaAZoCWgPQwjtSWBzDr4KwJSGlFKUaBVLMmgWR0Cmi9GX5WRzdX2UKGgGaAloD0MIIOwUqwYhAMCUhpRSlGgVSzJoFkdApo2sQCjk/HV9lChoBmgJaA9DCA7Xag974QfAlIaUUpRoFUsyaBZHQKaNVnjhky11fZQoaAZoCWgPQwjUKY9uhKUHwJSGlFKUaBVLMmgWR0CmjQOsT37DdX2UKGgGaAloD0MIKgKc3sX7/b+UhpRSlGgVSzJoFkdApoyxkwvg33V9lChoBmgJaA9DCKd38X7cvgLAlIaUUpRoFUsyaBZHQKaPFv3rUsp1fZQoaAZoCWgPQwgzwXCuYcYAwJSGlFKUaBVLMmgWR0CmjsF+mWMTdX2UKGgGaAloD0MIr5l8s80NCsCUhpRSlGgVSzJoFkdApo5vwAlv63V9lChoBmgJaA9DCLpKd9fZUAXAlIaUUpRoFUsyaBZHQKaOHWoWHk91fZQoaAZoCWgPQwi932jHDV8DwJSGlFKUaBVLMmgWR0CmkIBOxjaxdX2UKGgGaAloD0MIK6G7JM4K/7+UhpRSlGgVSzJoFkdAppAqr5qM33V9lChoBmgJaA9DCCMyrOKNDAbAlIaUUpRoFUsyaBZHQKaP2DdxhlV1fZQoaAZoCWgPQwgkmdU73C4MwJSGlFKUaBVLMmgWR0Cmj4Xf642CdX2UKGgGaAloD0MI6KIh41FKCMCUhpRSlGgVSzJoFkdAppHshcJMQHV9lChoBmgJaA9DCDfeHRmrDQvAlIaUUpRoFUsyaBZHQKaRls1KoQ51fZQoaAZoCWgPQwgI46dxb34DwJSGlFKUaBVLMmgWR0CmkUPgNwzddX2UKGgGaAloD0MICaaaWUvBD8CUhpRSlGgVSzJoFkdAppDxo24usnV9lChoBmgJaA9DCJdYGY18nvy/lIaUUpRoFUsyaBZHQKaTXhxYJVt1fZQoaAZoCWgPQwiFQC5x5GEFwJSGlFKUaBVLMmgWR0Cmkwh9Tgl4dX2UKGgGaAloD0MIw5ygTQ4/A8CUhpRSlGgVSzJoFkdAppK1roGIK3V9lChoBmgJaA9DCEzFxryOWALAlIaUUpRoFUsyaBZHQKaSY2Yv38J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f68b0ba1940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f68b0b97f30>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1200000, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676576411955454657, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOw/lPu9dizzDt+0+Ow/lPu9dizzDt+0+Ow/lPu9dizzDt+0+Ow/lPu9dizzDt+0+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA9ts9v4x3Mr4Rrom/AAZZv8Xrp796l+o+Rju2v0dFZr/6I7U/JJ1avw+Ynj/sHHy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7D+U+712LPMO37T6XLXE83+5Bu7IreTw7D+U+712LPMO37T6XLXE83+5Bu7IreTw7D+U+712LPMO37T6XLXE83+5Bu7IreTw7D+U+712LPMO37T6XLXE83+5Bu7IreTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.44738182 0.01701256 0.46429262]\n [0.44738182 0.01701256 0.46429262]\n [0.44738182 0.01701256 0.46429262]\n [0.44738182 0.01701256 0.46429262]]", "desired_goal": "[[-0.7416376 -0.17428416 -1.0756246 ]\n [-0.8477478 -1.3118826 0.45818692]\n [-1.4236839 -0.8994946 1.4151604 ]\n [-0.8539603 1.2390155 -0.9848163 ]]", "observation": "[[ 0.44738182 0.01701256 0.46429262 0.01472034 -0.00295918 0.01520817]\n [ 0.44738182 0.01701256 0.46429262 0.01472034 -0.00295918 0.01520817]\n [ 0.44738182 0.01701256 0.46429262 0.01472034 -0.00295918 0.01520817]\n [ 0.44738182 0.01701256 0.46429262 0.01472034 -0.00295918 0.01520817]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKS2LvSExOz3somc+dR+4vDsJrj1FC/c6QtHEvVCQqT0nnzY+lCFoPQmVdjqlUD0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06795723 0.04570115 0.22620744]\n [-0.02247594 0.08497854 0.0018848 ]\n [-0.09610225 0.08279479 0.1783415 ]\n [ 0.05667265 0.00094064 0.18487795]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrvTabKzkDsCUhpRSlIwBbJRLMowBdJRHQK6zzMwDeTF1fZQoaAZoCWgPQwgQP/89eL0VwJSGlFKUaBVLMmgWR0Cus46hg3LndX2UKGgGaAloD0MI6SyzCMWGEsCUhpRSlGgVSzJoFkdArrNNrGipN3V9lChoBmgJaA9DCNDukGKAZBPAlIaUUpRoFUsyaBZHQK6zEEOiFkB1fZQoaAZoCWgPQwjqeqLrws/2v5SGlFKUaBVLMmgWR0CutRMqjJuEdX2UKGgGaAloD0MI68TleAViBcCUhpRSlGgVSzJoFkdArrTVjgAIY3V9lChoBmgJaA9DCLSULCehlCDAlIaUUpRoFUsyaBZHQK60lPTodMl1fZQoaAZoCWgPQwhUqG4u/rYDwJSGlFKUaBVLMmgWR0CutFeIMz/IdX2UKGgGaAloD0MIWP/nMF9+B8CUhpRSlGgVSzJoFkdArrYoF7laKXV9lChoBmgJaA9DCESF6ubi1yHAlIaUUpRoFUsyaBZHQK616ixmkFh1fZQoaAZoCWgPQwjqkQa3tXUfwJSGlFKUaBVLMmgWR0CutamlqJuVdX2UKGgGaAloD0MIRWRYxRuJEsCUhpRSlGgVSzJoFkdArrVrdP+GXXV9lChoBmgJaA9DCN8WLNUFXAbAlIaUUpRoFUsyaBZHQK63NfWMCLd1fZQoaAZoCWgPQwhWKqio+kUUwJSGlFKUaBVLMmgWR0CutvgDq4YrdX2UKGgGaAloD0MIaogq/BluGsCUhpRSlGgVSzJoFkdArra3WUbDM3V9lChoBmgJaA9DCIVE2safaA3AlIaUUpRoFUsyaBZHQK62ePy08eV1fZQoaAZoCWgPQwhANPPkmoIHwJSGlFKUaBVLMmgWR0CuuE6TGHYZdX2UKGgGaAloD0MIvMrapnj8F8CUhpRSlGgVSzJoFkdArrgQzguRLnV9lChoBmgJaA9DCDKQZ5dvPQ7AlIaUUpRoFUsyaBZHQK63z/LDAJt1fZQoaAZoCWgPQwjl0CLb+Q4SwJSGlFKUaBVLMmgWR0Cut5Gh/RVqdX2UKGgGaAloD0MIfzMxXYi1HcCUhpRSlGgVSzJoFkdArrlYqwyIpHV9lChoBmgJaA9DCKUTCaaaGRHAlIaUUpRoFUsyaBZHQK65GouPFNt1fZQoaAZoCWgPQwhGKLaCpgURwJSGlFKUaBVLMmgWR0CuuNqYRdyDdX2UKGgGaAloD0MI9P3UeOm2EcCUhpRSlGgVSzJoFkdArricKLKmsXV9lChoBmgJaA9DCBizJasifA3AlIaUUpRoFUsyaBZHQK66aXjU/fR1fZQoaAZoCWgPQwiOBvAWSJAMwJSGlFKUaBVLMmgWR0CuuitgrpaBdX2UKGgGaAloD0MIOfHVjuL8FsCUhpRSlGgVSzJoFkdArrnqf4AS4HV9lChoBmgJaA9DCD6Skh6GthDAlIaUUpRoFUsyaBZHQK65rGdZq211fZQoaAZoCWgPQwj7srRTczkQwJSGlFKUaBVLMmgWR0Cuu2YB3iaRdX2UKGgGaAloD0MIXW4w1GGlD8CUhpRSlGgVSzJoFkdArrsoDFId2nV9lChoBmgJaA9DCM0f09o0NhHAlIaUUpRoFUsyaBZHQK665yRSxaB1fZQoaAZoCWgPQwhodt1bkVgEwJSGlFKUaBVLMmgWR0Cuuql9roGIdX2UKGgGaAloD0MIVvMcke+yDsCUhpRSlGgVSzJoFkdArrxbn/1g6XV9lChoBmgJaA9DCGzoZn+gvAzAlIaUUpRoFUsyaBZHQK68HeAuqWF1fZQoaAZoCWgPQwhvgQTFj9ELwJSGlFKUaBVLMmgWR0Cuu9zhHbypdX2UKGgGaAloD0MIYi0+BcBYJcCUhpRSlGgVSzJoFkdArrueeg+Ql3V9lChoBmgJaA9DCL3+JD53UhbAlIaUUpRoFUsyaBZHQK69SN0eU6h1fZQoaAZoCWgPQwg2zqYjgJsHwJSGlFKUaBVLMmgWR0CuvQtKh+OPdX2UKGgGaAloD0MI7UW0HVPXCcCUhpRSlGgVSzJoFkdArrzKbjLjgnV9lChoBmgJaA9DCH1AoDNpgxPAlIaUUpRoFUsyaBZHQK68jD1oQFt1fZQoaAZoCWgPQwhvg9pv7YQNwJSGlFKUaBVLMmgWR0CuvldkjHGTdX2UKGgGaAloD0MIo5I6AU3UG8CUhpRSlGgVSzJoFkdArr4ZS9/SY3V9lChoBmgJaA9DCC5U/rW8IhXAlIaUUpRoFUsyaBZHQK692Fj/dZd1fZQoaAZoCWgPQwh5B3jSwgUMwJSGlFKUaBVLMmgWR0CuvZrv9cbBdX2UKGgGaAloD0MIHzF6bqELDMCUhpRSlGgVSzJoFkdArr9iLdepoHV9lChoBmgJaA9DCCpSYWwhKAXAlIaUUpRoFUsyaBZHQK6/JPE87p51fZQoaAZoCWgPQwgHtHQF2ygNwJSGlFKUaBVLMmgWR0CuvuQI+nqFdX2UKGgGaAloD0MIjX+fceFwEsCUhpRSlGgVSzJoFkdArr6lmxt52XV9lChoBmgJaA9DCLMIxVbQBBLAlIaUUpRoFUsyaBZHQK7AfhH9WIZ1fZQoaAZoCWgPQwh5QNmUK1wewJSGlFKUaBVLMmgWR0CuwD/jjrAydX2UKGgGaAloD0MIFoTyPo6WFMCUhpRSlGgVSzJoFkdArsAAIY3vQXV9lChoBmgJaA9DCPRQ24ZRQCHAlIaUUpRoFUsyaBZHQK6/weNDMNd1fZQoaAZoCWgPQwhP6zao/ZYQwJSGlFKUaBVLMmgWR0CuwYKr7wazdX2UKGgGaAloD0MI1Xsqpz2FD8CUhpRSlGgVSzJoFkdArsFEkMTewnV9lChoBmgJaA9DCKW9wRcmkwrAlIaUUpRoFUsyaBZHQK7BBLOiWVx1fZQoaAZoCWgPQwgUs14M5fQRwJSGlFKUaBVLMmgWR0CuwMa6J66bdX2UKGgGaAloD0MIhetRuB5lEsCUhpRSlGgVSzJoFkdArsKVwo9cKXV9lChoBmgJaA9DCOgxyjMvZwrAlIaUUpRoFUsyaBZHQK7CWA1ejVR1fZQoaAZoCWgPQwiMuWsJ+bAfwJSGlFKUaBVLMmgWR0Cuwhd+gDigdX2UKGgGaAloD0MIwhIPKJsSDMCUhpRSlGgVSzJoFkdArsHbRrrPdHV9lChoBmgJaA9DCGsotRfRRhLAlIaUUpRoFUsyaBZHQK7EOCjDbah1fZQoaAZoCWgPQwhWm/9XHakSwJSGlFKUaBVLMmgWR0Cuw/q1w5vMdX2UKGgGaAloD0MI1Xq/0Y4LEMCUhpRSlGgVSzJoFkdArsO6S3b213V9lChoBmgJaA9DCPTAx2DFyQrAlIaUUpRoFUsyaBZHQK7DfKIznA91fZQoaAZoCWgPQwiJQzaQLpYHwJSGlFKUaBVLMmgWR0CuxnQAuIykdX2UKGgGaAloD0MIq3e4HRo2CcCUhpRSlGgVSzJoFkdArsY4ZVGTcXV9lChoBmgJaA9DCAKBzqRNFQrAlIaUUpRoFUsyaBZHQK7F+hxHXmN1fZQoaAZoCWgPQwgSwqONIzYJwJSGlFKUaBVLMmgWR0Cuxb4AS39adX2UKGgGaAloD0MIKJzdWiajBcCUhpRSlGgVSzJoFkdArsh7IBBAwHV9lChoBmgJaA9DCPxR1Jl7SArAlIaUUpRoFUsyaBZHQK7IP6P8yet1fZQoaAZoCWgPQwiYolwav9AIwJSGlFKUaBVLMmgWR0Cux/+u/1xsdX2UKGgGaAloD0MIwRw9fm+TD8CUhpRSlGgVSzJoFkdArsfB/XoTwnV9lChoBmgJaA9DCKsHzEOm/A/AlIaUUpRoFUsyaBZHQK7KMnvUjLV1fZQoaAZoCWgPQwjll8EYkdAgwJSGlFKUaBVLMmgWR0CuyfUN8VpLdX2UKGgGaAloD0MIb9Of/UiBFsCUhpRSlGgVSzJoFkdArsm1V/+bVnV9lChoBmgJaA9DCL9FJ0ut1yHAlIaUUpRoFUsyaBZHQK7Jd3pOerd1fZQoaAZoCWgPQwghy4KJPwoRwJSGlFKUaBVLMmgWR0Cuy4Nrj5sTdX2UKGgGaAloD0MIGcizy7ceDMCUhpRSlGgVSzJoFkdArstFfJFLFnV9lChoBmgJaA9DCDB/hcyVgQnAlIaUUpRoFUsyaBZHQK7LBJfYzzp1fZQoaAZoCWgPQwj9aaM6HWgQwJSGlFKUaBVLMmgWR0CuysZQP7N0dX2UKGgGaAloD0MI5+Jve4JUEcCUhpRSlGgVSzJoFkdArsxgMjNY83V9lChoBmgJaA9DCELMJVXbvR3AlIaUUpRoFUsyaBZHQK7MIiGFi8Z1fZQoaAZoCWgPQwjXwiy0c9oKwJSGlFKUaBVLMmgWR0Cuy+E5hjOLdX2UKGgGaAloD0MINlg4SfNXEMCUhpRSlGgVSzJoFkdArsui1LJ0XHV9lChoBmgJaA9DCHIYzF8h8wjAlIaUUpRoFUsyaBZHQK7NQHUMG5d1fZQoaAZoCWgPQwjcvHFSmPcLwJSGlFKUaBVLMmgWR0CuzQI0hvBKdX2UKGgGaAloD0MI1sQCX9GtF8CUhpRSlGgVSzJoFkdArszBn6Eal3V9lChoBmgJaA9DCI0MchdhuhHAlIaUUpRoFUsyaBZHQK7Mg2FWXC11fZQoaAZoCWgPQwgSFhVxOlkWwJSGlFKUaBVLMmgWR0CuzlAH3UQTdX2UKGgGaAloD0MIk//J370jEsCUhpRSlGgVSzJoFkdArs4RzDGcWnV9lChoBmgJaA9DCNTxmIHKmAfAlIaUUpRoFUsyaBZHQK7N0cpb2UV1fZQoaAZoCWgPQwh8nj9tVC8hwJSGlFKUaBVLMmgWR0CuzZNdqtYCdX2UKGgGaAloD0MIb37DRIMEE8CUhpRSlGgVSzJoFkdArs8tB2OhkHV9lChoBmgJaA9DCG02VmKelRjAlIaUUpRoFUsyaBZHQK7O7swco6V1fZQoaAZoCWgPQwhd+SzPg1sQwJSGlFKUaBVLMmgWR0Cuzq3YL9dedX2UKGgGaAloD0MI1xTI7CzaE8CUhpRSlGgVSzJoFkdArs5vb7CSBHV9lChoBmgJaA9DCLWlDvJ68AfAlIaUUpRoFUsyaBZHQK7QMz1schl1fZQoaAZoCWgPQwhMa9PYXgsSwJSGlFKUaBVLMmgWR0Cuz/Use4kNdX2UKGgGaAloD0MIeTpXlBKCBsCUhpRSlGgVSzJoFkdArs+1bVz6rXV9lChoBmgJaA9DCKBTkJ+NbBDAlIaUUpRoFUsyaBZHQK7Pd0nw5Np1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 60000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (815 kB). View file
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -3.
|
|
|
1 |
+
{"mean_reward": -3.748255747789517, "std_reward": 2.1079869449872795, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T20:45:54.118937"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03f992bf566656ee2ca5d88b26df13d2a8ea23b94a4f6ed6b2f6f7668d6d1765
|
3 |
size 3056
|