Maxime Kuntz
commited on
Commit
·
47724aa
1
Parent(s):
83a2b67
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-unit1.zip +3 -0
- ppo-LunarLander-v2-unit1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-unit1/data +95 -0
- ppo-LunarLander-v2-unit1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-unit1/policy.pth +3 -0
- ppo-LunarLander-v2-unit1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-unit1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 256.51 +/- 23.42
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f06abba9d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06abba9dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06abba9e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06abba9ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f06abba9f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f06abbae040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f06abbae0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06abbae160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f06abbae1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06abbae280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06abbae310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06abbae3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f06abbab1e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677430111225042819, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrR3r332ww+1huQPnDo2L1H3uE9XOOxOwAAAAAAAAAA2gLUPfYQC7qmaV47ow66Ny4uMbt9EfQ1AACAPwAAAACaBLo8wzkFuvakvbsMzU84c6nEOgDlQzcAAIA/AACAPzMeVj3h+O68Wo6XPEu3YD0rhaA97ZpeOwAAgD8AAIA/KJqevmjViD/6n9a+1iD/vtuHub6YA1m9AAAAAAAAAADz7bG94ViburQhP7jxGv81Z8rFOsp43TcAAIA/AACAP+bOAT7ZpgM+7f/Vvdxs/b0BgIy9q+cNPQAAAAAAAAAAAGAZPfbUZ7r6RJQ74pMzNv+CkLpF+q26AACAPwAAgD/NxZk8FPbYOZw3i7siIF04BG+XO0bQRDkAAIA/AACAPybv4L3/ZII/Hd/vvewz777hZfi9oKV0PQAAAAAAAAAAumEKPo+BHjtR2RG66WsYt0LupDxqIDo5AACAPwAAgD8AaBQ99rg7ujPFxDj19xY0/HQfO/Iv5rcAAIA/AACAP02osb1SGKS51jjLOoQ2kjYRY4a7zqz3uQAAgD8AAAAAZrgCPAoutT9b4U4/++5OPn9cF7wecju+AAAAAAAAAAAAPwW9XP9XukKuIrgariKzC+MVu/5YPzcAAIA/AACAP2ZuWjuPxh+60+WEuhkyiLVQjb85gSueOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfbH34oseU0CUhpRSlIwBbJRN6AOMAXSUR0CSzxQGwA2idX2UKGgGaAloD0MIAHDs2fO1ZECUhpRSlGgVTegDaBZHQJLQQ5vLowF1fZQoaAZoCWgPQwii7gOQ2iJjQJSGlFKUaBVN6ANoFkdAktFSCOFQEnV9lChoBmgJaA9DCIoD6Pf9dmZAlIaUUpRoFU3oA2gWR0CS2MoOQQtjdX2UKGgGaAloD0MIv/G1Z5beZUCUhpRSlGgVTegDaBZHQJLd8H9m6Gx1fZQoaAZoCWgPQwg3GOqwQg1pQJSGlFKUaBVN6ANoFkdAkuFgaBI4EXV9lChoBmgJaA9DCEvMs5LWVmdAlIaUUpRoFU3oA2gWR0CS4xNH6MzedX2UKGgGaAloD0MIdZSD2QQsYkCUhpRSlGgVTegDaBZHQJLo6GYa5wx1fZQoaAZoCWgPQwjDKXPzjSlkQJSGlFKUaBVN6ANoFkdAkum5j6N2knV9lChoBmgJaA9DCKiMf5/xAWBAlIaUUpRoFU3oA2gWR0CS6jfjjrAydX2UKGgGaAloD0MIBOPg0jHsZkCUhpRSlGgVTegDaBZHQJMKytZFG5N1fZQoaAZoCWgPQwjEfHkBdihnQJSGlFKUaBVN6ANoFkdAkxB1cpsoD3V9lChoBmgJaA9DCM+G/DMDcGhAlIaUUpRoFU3oA2gWR0CTEQhuwX67dX2UKGgGaAloD0MIlSwnoXRJYUCUhpRSlGgVTegDaBZHQJMRT2RJVbR1fZQoaAZoCWgPQwiUFcPVAV9jQJSGlFKUaBVN6ANoFkdAkxbpSeiBXnV9lChoBmgJaA9DCHmthO4SvGJAlIaUUpRoFU3oA2gWR0CTGIk9U0emdX2UKGgGaAloD0MIyHpq9dXeX0CUhpRSlGgVTegDaBZHQJMnng/C66J1fZQoaAZoCWgPQwiJeyx9aFFlQJSGlFKUaBVN6ANoFkdAkyigxi5NGnV9lChoBmgJaA9DCGfV52orWFJAlIaUUpRoFUvuaBZHQJMoziQ1aW51fZQoaAZoCWgPQwjncoOhjkVkQJSGlFKUaBVN6ANoFkdAkymksrd30XV9lChoBmgJaA9DCNtpa0QwtGRAlIaUUpRoFU3oA2gWR0CTLnFmWdEtdX2UKGgGaAloD0MIqdxELU0TYkCUhpRSlGgVTegDaBZHQJMxnm7rcCZ1fZQoaAZoCWgPQwge/wWCgCNmQJSGlFKUaBVN6ANoFkdAkzO/f4yoGnV9lChoBmgJaA9DCPoJZ7eWFmVAlIaUUpRoFU3oA2gWR0CTNMl6qsEJdX2UKGgGaAloD0MItJPBUXIMZkCUhpRSlGgVTegDaBZHQJM6HfwZwXJ1fZQoaAZoCWgPQwgWokPgyNtmQJSGlFKUaBVN6ANoFkdAkzsVE7W/anV9lChoBmgJaA9DCNUjDW5rS2VAlIaUUpRoFU3oA2gWR0CTO6Ippeu3dX2UKGgGaAloD0MIle8ZiVDqYUCUhpRSlGgVTegDaBZHQJNjiSFGoaV1fZQoaAZoCWgPQwgjgnFw6exmQJSGlFKUaBVN6ANoFkdAk2lJYHPeHnV9lChoBmgJaA9DCNuHvOVqmWJAlIaUUpRoFU3oA2gWR0CTacGetjkNdX2UKGgGaAloD0MIkbQbfcxlXUCUhpRSlGgVTegDaBZHQJNp9txdY4h1fZQoaAZoCWgPQwjaHOc24a5dQJSGlFKUaBVN6ANoFkdAk27bLU1AJXV9lChoBmgJaA9DCGqHvybrjmZAlIaUUpRoFU3oA2gWR0CTfvwZOzppdX2UKGgGaAloD0MIgy9Mpoo9YUCUhpRSlGgVTegDaBZHQJOAR/lQuVZ1fZQoaAZoCWgPQwiismFNZT9jQJSGlFKUaBVN6ANoFkdAk4CDhky1u3V9lChoBmgJaA9DCNrLttPW3GBAlIaUUpRoFU3oA2gWR0CTgWUnXumadX2UKGgGaAloD0MI3lm77UKdY0CUhpRSlGgVTegDaBZHQJOHng4wRGt1fZQoaAZoCWgPQwiBk23gjuFlQJSGlFKUaBVN6ANoFkdAk4y7ExZdOnV9lChoBmgJaA9DCHzT9NmB4GRAlIaUUpRoFU3oA2gWR0CTkCRuTA32dX2UKGgGaAloD0MIBBxClZqgYkCUhpRSlGgVTegDaBZHQJOR8L1EmY11fZQoaAZoCWgPQwhz9zk+Wv5LQJSGlFKUaBVL4GgWR0CTk4StvGZNdX2UKGgGaAloD0MIHxDoTFo/cECUhpRSlGgVTVMCaBZHQJOVVv4ubqh1fZQoaAZoCWgPQwgJqdvZV3piQJSGlFKUaBVN6ANoFkdAk5jCmQ8wH3V9lChoBmgJaA9DCNbHQ99dm2BAlIaUUpRoFU3oA2gWR0CTmZATZg5SdX2UKGgGaAloD0MIVmR0QBJIZECUhpRSlGgVTegDaBZHQJOaATyrgfl1fZQoaAZoCWgPQwjg8lgzMh5mQJSGlFKUaBVN6ANoFkdAk7k7QokRjHV9lChoBmgJaA9DCIs3Mo98BmBAlIaUUpRoFU3oA2gWR0CTviOy3Td+dX2UKGgGaAloD0MIDhDM0eNQX0CUhpRSlGgVTegDaBZHQJO+iuU2UB51fZQoaAZoCWgPQwjLZ3ke3H5iQJSGlFKUaBVN6ANoFkdAk8QSEYfnwHV9lChoBmgJaA9DCIblz7eFomNAlIaUUpRoFU3oA2gWR0CT15t6X0GvdX2UKGgGaAloD0MIbM8sCdD+YkCUhpRSlGgVTegDaBZHQJPYtI7Njb11fZQoaAZoCWgPQwgcCwqDslplQJSGlFKUaBVN6ANoFkdAk9jnvhIe5nV9lChoBmgJaA9DCOUqFr8p+WFAlIaUUpRoFU3oA2gWR0CT3wUF0PpZdX2UKGgGaAloD0MIjiEAOPZ0ZUCUhpRSlGgVTegDaBZHQJPibHyVfNR1fZQoaAZoCWgPQwgX8ghuJORlQJSGlFKUaBVN6ANoFkdAk+S0O3DvVnV9lChoBmgJaA9DCFlN1xPdnWRAlIaUUpRoFU3oA2gWR0CT5dYiPhhqdX2UKGgGaAloD0MIE/BrJAnwT0CUhpRSlGgVTQABaBZHQJPm/xlQMx51fZQoaAZoCWgPQwg6deWzvPNiQJSGlFKUaBVN6ANoFkdAk+cc4gieNHV9lChoBmgJaA9DCPw2xHjNKWZAlIaUUpRoFU3oA2gWR0CT6Fe05U97dX2UKGgGaAloD0MISiandgaOY0CUhpRSlGgVTegDaBZHQJPqvuhK15V1fZQoaAZoCWgPQwjuJ2N8GGxlQJSGlFKUaBVN6ANoFkdAk+uIXCTEBXV9lChoBmgJaA9DCHaMKy6Ol2NAlIaUUpRoFU3oA2gWR0CT6/a0x/NJdX2UKGgGaAloD0MIYr68AHtvYECUhpRSlGgVTegDaBZHQJQR5nFo+Oh1fZQoaAZoCWgPQwhxPQrXo9FdQJSGlFKUaBVN6ANoFkdAlBdh8IAwPHV9lChoBmgJaA9DCEMaFTjZ1FtAlIaUUpRoFU3oA2gWR0CUF97yQPqcdX2UKGgGaAloD0MIkSdJ10ymX0CUhpRSlGgVTegDaBZHQJQco7V8Ti91fZQoaAZoCWgPQwj5vOKpx6JmQJSGlFKUaBVN6ANoFkdAlC16ef7Jn3V9lChoBmgJaA9DCIUi3c+pImZAlIaUUpRoFU3oA2gWR0CULavpyIYWdX2UKGgGaAloD0MIdH6K40DQYUCUhpRSlGgVTegDaBZHQJQzsXWOIZZ1fZQoaAZoCWgPQwjzcW2omBphQJSGlFKUaBVN6ANoFkdAlDfBpxm03XV9lChoBmgJaA9DCOxNDMnJHFxAlIaUUpRoFU3oA2gWR0CUOxmU4aP0dX2UKGgGaAloD0MIJQhXQCFDaECUhpRSlGgVTegDaBZHQJQ8wQNCqp91fZQoaAZoCWgPQwg//tKivmBlQJSGlFKUaBVN6ANoFkdAlD4tsenyeHV9lChoBmgJaA9DCBAEyNAxUWhAlIaUUpRoFU3oA2gWR0CUPlIyCWeIdX2UKGgGaAloD0MIDVUxlX6JZkCUhpRSlGgVTegDaBZHQJQ/8gbIcR11fZQoaAZoCWgPQwgPf03W6KpwQJSGlFKUaBVNfwJoFkdAlEJY95hScnV9lChoBmgJaA9DCE1LrIzG+mJAlIaUUpRoFU3oA2gWR0CUQ67Kq4pddX2UKGgGaAloD0MILSRgdPnHZUCUhpRSlGgVTegDaBZHQJRExWjoIOZ1fZQoaAZoCWgPQwjpCyHnfVZiQJSGlFKUaBVN6ANoFkdAlEVektVaOnV9lChoBmgJaA9DCD7qr1dY0kJAlIaUUpRoFUvaaBZHQJRHPQ1JlJ91fZQoaAZoCWgPQwh1VaAWgxlKQJSGlFKUaBVNAwFoFkdAlE6jUy57PnV9lChoBmgJaA9DCL38TpMZlGRAlIaUUpRoFU3oA2gWR0CUZJhvze41dX2UKGgGaAloD0MIVaNXA5R/XkCUhpRSlGgVTegDaBZHQJRpehRIjGF1fZQoaAZoCWgPQwjxY8xdy25mQJSGlFKUaBVN6ANoFkdAlG3gaaTfSHV9lChoBmgJaA9DCAE0Spf+emdAlIaUUpRoFU3oA2gWR0CUgZ6H0se5dX2UKGgGaAloD0MIpdjRONR4XECUhpRSlGgVTegDaBZHQJSB6J66asp1fZQoaAZoCWgPQwhkIqXZvNFnQJSGlFKUaBVN6ANoFkdAlIksh9srNHV9lChoBmgJaA9DCJ8ENudgxGFAlIaUUpRoFU3oA2gWR0CUjw8pCrtFdX2UKGgGaAloD0MI8db5t8uLY0CUhpRSlGgVTegDaBZHQJSQNAdGRV91fZQoaAZoCWgPQwhiLNMvEWBmQJSGlFKUaBVN6ANoFkdAlJElaGHpKXV9lChoBmgJaA9DCLg81owMymFAlIaUUpRoFU3oA2gWR0CUkUDzAeq8dX2UKGgGaAloD0MI5rFmZJAGYECUhpRSlGgVTegDaBZHQJSUSeumrKh1fZQoaAZoCWgPQwjLTdTS3CtkQJSGlFKUaBVN6ANoFkdAlJU9sWO6unV9lChoBmgJaA9DCKvQQCybI2lAlIaUUpRoFU3oA2gWR0CUlf6Vt4zKdX2UKGgGaAloD0MI2V92Tx7eXkCUhpRSlGgVTegDaBZHQJSWdQIldC51fZQoaAZoCWgPQwhksU0qGtpkQJSGlFKUaBVN6ANoFkdAlJfz7VJ+UnV9lChoBmgJaA9DCEzhQbPrfEVAlIaUUpRoFUvcaBZHQJSauqzZ6D51fZQoaAZoCWgPQwiWtOIbiulnQJSGlFKUaBVN6ANoFkdAlJ7rQ9ic5XV9lChoBmgJaA9DCEdzZOWXPFBAlIaUUpRoFUvFaBZHQJSfVINEw351fZQoaAZoCWgPQwgXoG01awlmQJSGlFKUaBVN6ANoFkdAlKH8OPNmlXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-unit1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e8a28db8d1572b80c5e3a390d5103c93ed22157e3ad4dbf825f84d1256df605
|
3 |
+
size 147420
|
ppo-LunarLander-v2-unit1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2-unit1/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f06abba9d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f06abba9dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f06abba9e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f06abba9ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f06abba9f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f06abbae040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f06abbae0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f06abbae160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f06abbae1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f06abbae280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f06abbae310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f06abbae3a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f06abbab1e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677430111225042819,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABrR3r332ww+1huQPnDo2L1H3uE9XOOxOwAAAAAAAAAA2gLUPfYQC7qmaV47ow66Ny4uMbt9EfQ1AACAPwAAAACaBLo8wzkFuvakvbsMzU84c6nEOgDlQzcAAIA/AACAPzMeVj3h+O68Wo6XPEu3YD0rhaA97ZpeOwAAgD8AAIA/KJqevmjViD/6n9a+1iD/vtuHub6YA1m9AAAAAAAAAADz7bG94ViburQhP7jxGv81Z8rFOsp43TcAAIA/AACAP+bOAT7ZpgM+7f/Vvdxs/b0BgIy9q+cNPQAAAAAAAAAAAGAZPfbUZ7r6RJQ74pMzNv+CkLpF+q26AACAPwAAgD/NxZk8FPbYOZw3i7siIF04BG+XO0bQRDkAAIA/AACAPybv4L3/ZII/Hd/vvewz777hZfi9oKV0PQAAAAAAAAAAumEKPo+BHjtR2RG66WsYt0LupDxqIDo5AACAPwAAgD8AaBQ99rg7ujPFxDj19xY0/HQfO/Iv5rcAAIA/AACAP02osb1SGKS51jjLOoQ2kjYRY4a7zqz3uQAAgD8AAAAAZrgCPAoutT9b4U4/++5OPn9cF7wecju+AAAAAAAAAAAAPwW9XP9XukKuIrgariKzC+MVu/5YPzcAAIA/AACAP2ZuWjuPxh+60+WEuhkyiLVQjb85gSueOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIfbH34oseU0CUhpRSlIwBbJRN6AOMAXSUR0CSzxQGwA2idX2UKGgGaAloD0MIAHDs2fO1ZECUhpRSlGgVTegDaBZHQJLQQ5vLowF1fZQoaAZoCWgPQwii7gOQ2iJjQJSGlFKUaBVN6ANoFkdAktFSCOFQEnV9lChoBmgJaA9DCIoD6Pf9dmZAlIaUUpRoFU3oA2gWR0CS2MoOQQtjdX2UKGgGaAloD0MIv/G1Z5beZUCUhpRSlGgVTegDaBZHQJLd8H9m6Gx1fZQoaAZoCWgPQwg3GOqwQg1pQJSGlFKUaBVN6ANoFkdAkuFgaBI4EXV9lChoBmgJaA9DCEvMs5LWVmdAlIaUUpRoFU3oA2gWR0CS4xNH6MzedX2UKGgGaAloD0MIdZSD2QQsYkCUhpRSlGgVTegDaBZHQJLo6GYa5wx1fZQoaAZoCWgPQwjDKXPzjSlkQJSGlFKUaBVN6ANoFkdAkum5j6N2knV9lChoBmgJaA9DCKiMf5/xAWBAlIaUUpRoFU3oA2gWR0CS6jfjjrAydX2UKGgGaAloD0MIBOPg0jHsZkCUhpRSlGgVTegDaBZHQJMKytZFG5N1fZQoaAZoCWgPQwjEfHkBdihnQJSGlFKUaBVN6ANoFkdAkxB1cpsoD3V9lChoBmgJaA9DCM+G/DMDcGhAlIaUUpRoFU3oA2gWR0CTEQhuwX67dX2UKGgGaAloD0MIlSwnoXRJYUCUhpRSlGgVTegDaBZHQJMRT2RJVbR1fZQoaAZoCWgPQwiUFcPVAV9jQJSGlFKUaBVN6ANoFkdAkxbpSeiBXnV9lChoBmgJaA9DCHmthO4SvGJAlIaUUpRoFU3oA2gWR0CTGIk9U0emdX2UKGgGaAloD0MIyHpq9dXeX0CUhpRSlGgVTegDaBZHQJMnng/C66J1fZQoaAZoCWgPQwiJeyx9aFFlQJSGlFKUaBVN6ANoFkdAkyigxi5NGnV9lChoBmgJaA9DCGfV52orWFJAlIaUUpRoFUvuaBZHQJMoziQ1aW51fZQoaAZoCWgPQwjncoOhjkVkQJSGlFKUaBVN6ANoFkdAkymksrd30XV9lChoBmgJaA9DCNtpa0QwtGRAlIaUUpRoFU3oA2gWR0CTLnFmWdEtdX2UKGgGaAloD0MIqdxELU0TYkCUhpRSlGgVTegDaBZHQJMxnm7rcCZ1fZQoaAZoCWgPQwge/wWCgCNmQJSGlFKUaBVN6ANoFkdAkzO/f4yoGnV9lChoBmgJaA9DCPoJZ7eWFmVAlIaUUpRoFU3oA2gWR0CTNMl6qsEJdX2UKGgGaAloD0MItJPBUXIMZkCUhpRSlGgVTegDaBZHQJM6HfwZwXJ1fZQoaAZoCWgPQwgWokPgyNtmQJSGlFKUaBVN6ANoFkdAkzsVE7W/anV9lChoBmgJaA9DCNUjDW5rS2VAlIaUUpRoFU3oA2gWR0CTO6Ippeu3dX2UKGgGaAloD0MIle8ZiVDqYUCUhpRSlGgVTegDaBZHQJNjiSFGoaV1fZQoaAZoCWgPQwgjgnFw6exmQJSGlFKUaBVN6ANoFkdAk2lJYHPeHnV9lChoBmgJaA9DCNuHvOVqmWJAlIaUUpRoFU3oA2gWR0CTacGetjkNdX2UKGgGaAloD0MIkbQbfcxlXUCUhpRSlGgVTegDaBZHQJNp9txdY4h1fZQoaAZoCWgPQwjaHOc24a5dQJSGlFKUaBVN6ANoFkdAk27bLU1AJXV9lChoBmgJaA9DCGqHvybrjmZAlIaUUpRoFU3oA2gWR0CTfvwZOzppdX2UKGgGaAloD0MIgy9Mpoo9YUCUhpRSlGgVTegDaBZHQJOAR/lQuVZ1fZQoaAZoCWgPQwiismFNZT9jQJSGlFKUaBVN6ANoFkdAk4CDhky1u3V9lChoBmgJaA9DCNrLttPW3GBAlIaUUpRoFU3oA2gWR0CTgWUnXumadX2UKGgGaAloD0MI3lm77UKdY0CUhpRSlGgVTegDaBZHQJOHng4wRGt1fZQoaAZoCWgPQwiBk23gjuFlQJSGlFKUaBVN6ANoFkdAk4y7ExZdOnV9lChoBmgJaA9DCHzT9NmB4GRAlIaUUpRoFU3oA2gWR0CTkCRuTA32dX2UKGgGaAloD0MIBBxClZqgYkCUhpRSlGgVTegDaBZHQJOR8L1EmY11fZQoaAZoCWgPQwhz9zk+Wv5LQJSGlFKUaBVL4GgWR0CTk4StvGZNdX2UKGgGaAloD0MIHxDoTFo/cECUhpRSlGgVTVMCaBZHQJOVVv4ubqh1fZQoaAZoCWgPQwgJqdvZV3piQJSGlFKUaBVN6ANoFkdAk5jCmQ8wH3V9lChoBmgJaA9DCNbHQ99dm2BAlIaUUpRoFU3oA2gWR0CTmZATZg5SdX2UKGgGaAloD0MIVmR0QBJIZECUhpRSlGgVTegDaBZHQJOaATyrgfl1fZQoaAZoCWgPQwjg8lgzMh5mQJSGlFKUaBVN6ANoFkdAk7k7QokRjHV9lChoBmgJaA9DCIs3Mo98BmBAlIaUUpRoFU3oA2gWR0CTviOy3Td+dX2UKGgGaAloD0MIDhDM0eNQX0CUhpRSlGgVTegDaBZHQJO+iuU2UB51fZQoaAZoCWgPQwjLZ3ke3H5iQJSGlFKUaBVN6ANoFkdAk8QSEYfnwHV9lChoBmgJaA9DCIblz7eFomNAlIaUUpRoFU3oA2gWR0CT15t6X0GvdX2UKGgGaAloD0MIbM8sCdD+YkCUhpRSlGgVTegDaBZHQJPYtI7Njb11fZQoaAZoCWgPQwgcCwqDslplQJSGlFKUaBVN6ANoFkdAk9jnvhIe5nV9lChoBmgJaA9DCOUqFr8p+WFAlIaUUpRoFU3oA2gWR0CT3wUF0PpZdX2UKGgGaAloD0MIjiEAOPZ0ZUCUhpRSlGgVTegDaBZHQJPibHyVfNR1fZQoaAZoCWgPQwgX8ghuJORlQJSGlFKUaBVN6ANoFkdAk+S0O3DvVnV9lChoBmgJaA9DCFlN1xPdnWRAlIaUUpRoFU3oA2gWR0CT5dYiPhhqdX2UKGgGaAloD0MIE/BrJAnwT0CUhpRSlGgVTQABaBZHQJPm/xlQMx51fZQoaAZoCWgPQwg6deWzvPNiQJSGlFKUaBVN6ANoFkdAk+cc4gieNHV9lChoBmgJaA9DCPw2xHjNKWZAlIaUUpRoFU3oA2gWR0CT6Fe05U97dX2UKGgGaAloD0MISiandgaOY0CUhpRSlGgVTegDaBZHQJPqvuhK15V1fZQoaAZoCWgPQwjuJ2N8GGxlQJSGlFKUaBVN6ANoFkdAk+uIXCTEBXV9lChoBmgJaA9DCHaMKy6Ol2NAlIaUUpRoFU3oA2gWR0CT6/a0x/NJdX2UKGgGaAloD0MIYr68AHtvYECUhpRSlGgVTegDaBZHQJQR5nFo+Oh1fZQoaAZoCWgPQwhxPQrXo9FdQJSGlFKUaBVN6ANoFkdAlBdh8IAwPHV9lChoBmgJaA9DCEMaFTjZ1FtAlIaUUpRoFU3oA2gWR0CUF97yQPqcdX2UKGgGaAloD0MIkSdJ10ymX0CUhpRSlGgVTegDaBZHQJQco7V8Ti91fZQoaAZoCWgPQwj5vOKpx6JmQJSGlFKUaBVN6ANoFkdAlC16ef7Jn3V9lChoBmgJaA9DCIUi3c+pImZAlIaUUpRoFU3oA2gWR0CULavpyIYWdX2UKGgGaAloD0MIdH6K40DQYUCUhpRSlGgVTegDaBZHQJQzsXWOIZZ1fZQoaAZoCWgPQwjzcW2omBphQJSGlFKUaBVN6ANoFkdAlDfBpxm03XV9lChoBmgJaA9DCOxNDMnJHFxAlIaUUpRoFU3oA2gWR0CUOxmU4aP0dX2UKGgGaAloD0MIJQhXQCFDaECUhpRSlGgVTegDaBZHQJQ8wQNCqp91fZQoaAZoCWgPQwg//tKivmBlQJSGlFKUaBVN6ANoFkdAlD4tsenyeHV9lChoBmgJaA9DCBAEyNAxUWhAlIaUUpRoFU3oA2gWR0CUPlIyCWeIdX2UKGgGaAloD0MIDVUxlX6JZkCUhpRSlGgVTegDaBZHQJQ/8gbIcR11fZQoaAZoCWgPQwgPf03W6KpwQJSGlFKUaBVNfwJoFkdAlEJY95hScnV9lChoBmgJaA9DCE1LrIzG+mJAlIaUUpRoFU3oA2gWR0CUQ67Kq4pddX2UKGgGaAloD0MILSRgdPnHZUCUhpRSlGgVTegDaBZHQJRExWjoIOZ1fZQoaAZoCWgPQwjpCyHnfVZiQJSGlFKUaBVN6ANoFkdAlEVektVaOnV9lChoBmgJaA9DCD7qr1dY0kJAlIaUUpRoFUvaaBZHQJRHPQ1JlJ91fZQoaAZoCWgPQwh1VaAWgxlKQJSGlFKUaBVNAwFoFkdAlE6jUy57PnV9lChoBmgJaA9DCL38TpMZlGRAlIaUUpRoFU3oA2gWR0CUZJhvze41dX2UKGgGaAloD0MIVaNXA5R/XkCUhpRSlGgVTegDaBZHQJRpehRIjGF1fZQoaAZoCWgPQwjxY8xdy25mQJSGlFKUaBVN6ANoFkdAlG3gaaTfSHV9lChoBmgJaA9DCAE0Spf+emdAlIaUUpRoFU3oA2gWR0CUgZ6H0se5dX2UKGgGaAloD0MIpdjRONR4XECUhpRSlGgVTegDaBZHQJSB6J66asp1fZQoaAZoCWgPQwhkIqXZvNFnQJSGlFKUaBVN6ANoFkdAlIksh9srNHV9lChoBmgJaA9DCJ8ENudgxGFAlIaUUpRoFU3oA2gWR0CUjw8pCrtFdX2UKGgGaAloD0MI8db5t8uLY0CUhpRSlGgVTegDaBZHQJSQNAdGRV91fZQoaAZoCWgPQwhiLNMvEWBmQJSGlFKUaBVN6ANoFkdAlJElaGHpKXV9lChoBmgJaA9DCLg81owMymFAlIaUUpRoFU3oA2gWR0CUkUDzAeq8dX2UKGgGaAloD0MI5rFmZJAGYECUhpRSlGgVTegDaBZHQJSUSeumrKh1fZQoaAZoCWgPQwjLTdTS3CtkQJSGlFKUaBVN6ANoFkdAlJU9sWO6unV9lChoBmgJaA9DCKvQQCybI2lAlIaUUpRoFU3oA2gWR0CUlf6Vt4zKdX2UKGgGaAloD0MI2V92Tx7eXkCUhpRSlGgVTegDaBZHQJSWdQIldC51fZQoaAZoCWgPQwhksU0qGtpkQJSGlFKUaBVN6ANoFkdAlJfz7VJ+UnV9lChoBmgJaA9DCEzhQbPrfEVAlIaUUpRoFUvcaBZHQJSauqzZ6D51fZQoaAZoCWgPQwiWtOIbiulnQJSGlFKUaBVN6ANoFkdAlJ7rQ9ic5XV9lChoBmgJaA9DCEdzZOWXPFBAlIaUUpRoFUvFaBZHQJSfVINEw351fZQoaAZoCWgPQwgXoG01awlmQJSGlFKUaBVN6ANoFkdAlKH8OPNmlXVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2-unit1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:241a1cd04a590e32fbc52a871dbf9a7f026cf9bab64c4bccbd36bf3619ebe515
|
3 |
+
size 87929
|
ppo-LunarLander-v2-unit1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a4e815f06abed7add2afaeffe7608d0ca5c3598044b99051854d18995e8ac3c
|
3 |
+
size 43393
|
ppo-LunarLander-v2-unit1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-unit1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (220 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.5128821215805, "std_reward": 23.421613172370268, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T17:11:30.337480"}
|