pszemraj commited on
Commit
d6eaec8
1 Parent(s): e31b625

update files

Browse files
Files changed (1) hide show
  1. README.md +36 -57
README.md CHANGED
@@ -1,24 +1,3 @@
1
- ---
2
- language:
3
- - en
4
- datasets:
5
- - pubmed
6
- metrics:
7
- - f1
8
- pipeline_tag: text-classification
9
- widget:
10
- - text: "Many pathogenic processes and diseases are the result of an erroneous activation of the complement cascade and a number of inhibitors of complement have thus been examined for anti-inflammatory actions."
11
- example_title: "BACKGROUND example"
12
- - text: "A total of 192 MI patients and 140 control persons were included."
13
- example_title: "METHODS example"
14
- - text: "MI patients had 18 % higher plasma levels of MAp44 (IQR 11-25 %) as compared to the healthy control group (p < 0. 001.)"
15
- example_title: "RESULTS example"
16
- - text: "The finding that a brief CB group intervention delivered by real-world providers significantly reduced MDD onset relative to both brochure control and bibliotherapy is very encouraging, although effects on continuous outcome measures were small or nonsignificant and approximately half the magnitude of those found in efficacy research, potentially because the present sample reported lower initial depression."
17
- example_title: "CONCLUSIONS example"
18
- - text: "In order to understand and update the prevalence of myopia in Taiwan, a nationwide survey was performed in 1995."
19
- example_title: "OBJECTIVE example"
20
- ---
21
-
22
  # scibert-scivocab-cased_pub_section
23
  - original model file name: textclassifer_scibert_scivocab_cased_pubmed_20k
24
  - This is a fine-tuned checkpoint of `allenai/scibert_scivocab_cased` for document section text classification
@@ -29,80 +8,80 @@ widget:
29
 
30
  ### training_metrics
31
 
32
- - val_accuracy: 0.854031503200531
33
 
34
- - val_matthewscorrcoef: 0.802684485912323
35
 
36
- - val_f1score: 0.8521103858947754
37
 
38
- - val_cross_entropy: 0.4032764136791229
39
 
40
- - epoch: 12.0
41
 
42
- - train_accuracy_step: 0.8125
43
 
44
- - train_matthewscorrcoef_step: 0.736379086971283
45
 
46
- - train_f1score_step: 0.8151732683181763
47
 
48
- - train_cross_entropy_step: 0.46740928292274475
49
 
50
- - train_accuracy_epoch: 0.8337981700897217
51
 
52
- - train_matthewscorrcoef_epoch: 0.7759212851524353
53
 
54
- - train_f1score_epoch: 0.8315757513046265
55
 
56
- - train_cross_entropy_epoch: 0.46322858333587646
57
 
58
- - test_accuracy: 0.8467230796813965
59
 
60
- - test_matthewscorrcoef: 0.7933833003044128
61
 
62
- - test_f1score: 0.8449115753173828
63
 
64
- - test_cross_entropy: 0.4269302785396576
65
 
66
- - date_run: Apr-22-2022_t-02
67
 
68
  - huggingface_tag: allenai/scibert_scivocab_cased
69
 
70
  ### training_parameters
71
 
72
- - val_accuracy: 0.854031503200531
73
 
74
- - val_matthewscorrcoef: 0.802684485912323
75
 
76
- - val_f1score: 0.8521103858947754
77
 
78
- - val_cross_entropy: 0.4032764136791229
79
 
80
- - epoch: 12.0
81
 
82
- - train_accuracy_step: 0.8125
83
 
84
- - train_matthewscorrcoef_step: 0.736379086971283
85
 
86
- - train_f1score_step: 0.8151732683181763
87
 
88
- - train_cross_entropy_step: 0.46740928292274475
89
 
90
- - train_accuracy_epoch: 0.8337981700897217
91
 
92
- - train_matthewscorrcoef_epoch: 0.7759212851524353
93
 
94
- - train_f1score_epoch: 0.8315757513046265
95
 
96
- - train_cross_entropy_epoch: 0.46322858333587646
97
 
98
- - test_accuracy: 0.8467230796813965
99
 
100
- - test_matthewscorrcoef: 0.7933833003044128
101
 
102
- - test_f1score: 0.8449115753173828
103
 
104
- - test_cross_entropy: 0.4269302785396576
105
 
106
- - date_run: Apr-22-2022_t-02
107
 
108
  - huggingface_tag: allenai/scibert_scivocab_cased
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # scibert-scivocab-cased_pub_section
2
  - original model file name: textclassifer_scibert_scivocab_cased_pubmed_20k
3
  - This is a fine-tuned checkpoint of `allenai/scibert_scivocab_cased` for document section text classification
 
8
 
9
  ### training_metrics
10
 
11
+ - val_accuracy: 0.8489672541618347
12
 
13
+ - val_matthewscorrcoef: 0.7956399321556091
14
 
15
+ - val_f1score: 0.8465128540992737
16
 
17
+ - val_cross_entropy: 0.4199986457824707
18
 
19
+ - epoch: 4.0
20
 
21
+ - train_accuracy_step: 0.859375
22
 
23
+ - train_matthewscorrcoef_step: 0.809939980506897
24
 
25
+ - train_f1score_step: 0.8563070297241211
26
 
27
+ - train_cross_entropy_step: 0.4379327893257141
28
 
29
+ - train_accuracy_epoch: 0.8273193836212158
30
 
31
+ - train_matthewscorrcoef_epoch: 0.7671003341674805
32
 
33
+ - train_f1score_epoch: 0.824897050857544
34
 
35
+ - train_cross_entropy_epoch: 0.4835580885410309
36
 
37
+ - test_accuracy: 0.8423759937286377
38
 
39
+ - test_matthewscorrcoef: 0.7873286604881287
40
 
41
+ - test_f1score: 0.8399338126182556
42
 
43
+ - test_cross_entropy: 0.4428141117095947
44
 
45
+ - date_run: Apr-22-2022_t-01
46
 
47
  - huggingface_tag: allenai/scibert_scivocab_cased
48
 
49
  ### training_parameters
50
 
51
+ - val_accuracy: 0.8489672541618347
52
 
53
+ - val_matthewscorrcoef: 0.7956399321556091
54
 
55
+ - val_f1score: 0.8465128540992737
56
 
57
+ - val_cross_entropy: 0.4199986457824707
58
 
59
+ - epoch: 4.0
60
 
61
+ - train_accuracy_step: 0.859375
62
 
63
+ - train_matthewscorrcoef_step: 0.809939980506897
64
 
65
+ - train_f1score_step: 0.8563070297241211
66
 
67
+ - train_cross_entropy_step: 0.4379327893257141
68
 
69
+ - train_accuracy_epoch: 0.8273193836212158
70
 
71
+ - train_matthewscorrcoef_epoch: 0.7671003341674805
72
 
73
+ - train_f1score_epoch: 0.824897050857544
74
 
75
+ - train_cross_entropy_epoch: 0.4835580885410309
76
 
77
+ - test_accuracy: 0.8423759937286377
78
 
79
+ - test_matthewscorrcoef: 0.7873286604881287
80
 
81
+ - test_f1score: 0.8399338126182556
82
 
83
+ - test_cross_entropy: 0.4428141117095947
84
 
85
+ - date_run: Apr-22-2022_t-01
86
 
87
  - huggingface_tag: allenai/scibert_scivocab_cased