--- license: other tags: - merge - mergekit - lazymergekit base_model: - NousResearch/Meta-Llama-3-8B-Instruct - mlabonne/OrpoLlama-3-8B - cognitivecomputations/dolphin-2.9-llama3-8b - Locutusque/llama-3-neural-chat-v1-8b - cloudyu/Meta-Llama-3-8B-Instruct-DPO - vicgalle/Configurable-Llama-3-8B-v0.3 --- # ChimeraLlama-3-8B-v2 ChimeraLlama-3-8B-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) * [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) * [cognitivecomputations/dolphin-2.9-llama3-8b](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) * [Locutusque/llama-3-neural-chat-v1-8b](https://huggingface.co/Locutusque/llama-3-neural-chat-v1-8b) * [cloudyu/Meta-Llama-3-8B-Instruct-DPO](https://huggingface.co/cloudyu/Meta-Llama-3-8B-Instruct-DPO) * [vicgalle/Configurable-Llama-3-8B-v0.3](https://huggingface.co/vicgalle/Configurable-Llama-3-8B-v0.3) ## 🧩 Configuration ```yaml models: - model: NousResearch/Meta-Llama-3-8B # No parameters necessary for base model - model: NousResearch/Meta-Llama-3-8B-Instruct parameters: density: 0.6 weight: 0.55 - model: mlabonne/OrpoLlama-3-8B parameters: density: 0.55 weight: 0.05 - model: cognitivecomputations/dolphin-2.9-llama3-8b parameters: density: 0.55 weight: 0.1 - model: Locutusque/llama-3-neural-chat-v1-8b parameters: density: 0.55 weight: 0.05 - model: cloudyu/Meta-Llama-3-8B-Instruct-DPO parameters: density: 0.55 weight: 0.15 - model: vicgalle/Configurable-Llama-3-8B-v0.3 parameters: density: 0.55 weight: 0.1 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3-8B parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/ChimeraLlama-3-8B-v2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```